
1

Detecting and Mitigating Data-Dependent
DRAM Failures by Exploiting Current Memory

Content (Micro’17)

Dec 14, 2017 @ Google Japan

Samira Khan, Chris Wilkerson, Zhe Wang,
Alaa R. Alameldeen, Donghyuk Lee, Onur Mutlu

Soramichi Akiyama
Artificial Intelligence Research Center,

National Institute of Advanced Industrial Science and Technology (AIST), Japan
s.akiyama@aist.go.jp

2

“Low-Cost Inter-Linked Subarrays (LISA): Enabling fast inter-subarray
data movement in DRAM”, HPCA’16

Efficient data-movement between sub-arrays inside DRAM

“ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality”, HPCA’16

Reduce memory latency by shortening cell charge time

“Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology”, Micro’17

In-memory bitwise operation for DRAM

“SoftMC: A Flexible and Practical Open-Sourced Infrastructure for
Enabling Experimental DRAM Studies”, HPCA’17

Open-sourced DRAM controller on an FPGA

DRAM-related papers from the same group

3

The 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017

A top conference in computer architecture (along with ISCA,
HPCA, ASPLOS)

Sessions: DRAM, Accelerators, GPUs-1, Non-Volatile
Memory/Storage, In/Near Memory Computing, Security, Deep
Learning, Prediction, Consistency/Coherency Translation, Energy,
GPUs-2, OS and System Design, Unconventional Architectures,
Compilers and Microarch.

Number of Attendees: 350?

Micro’18 will be in Fukuoka

About Micro’17

4

DRAM cells

Super close: SAMSUNG predicts
it to be <10 nm in the future

Interference

row

colum
n

Demand for more and more memory (DRAM)
Big data analysis, AI, ...

Increased DRAM capacity → Higher density of DRAM cells
Capacity of 1 DIMM module: 1GB (2006?)→ 32GB (2016)

Same size → 32x density

DRAM cells (capacitors) are super close to each other
Increased interference from neighboring cells

Background (1/2)

5

More aggressive refresh to reduce interference
Refresh: key to keep DRAM contents consistent

Refresh interval: 64 ms (now) → 16 ms (predicted)

→ Higher overhead (performance, energy)

Background (2/2)

Detecting and mitigating DRAM failures (bit flips) caused by
interference is the key to achieve higher capacity with low overhead

Refresh

Refresh interval Short Long Ideal

Interference Low High Low

Overhead High Low Low

Trade-off related to
Refresh interval

6

1. Failures are data-dependent
Interference comes from neighboring cells → Different data,
different inference level

2. Failures are cell-dependent
Due to variations in the manufacturing process

“Cell X fails with a data pattern and a refresh rate” does not imply
“Every cell fails with the same pattern and the same refresh rate”

* This is not explicitly written, but assumed throughout the paper

Characteristics of Failures

Room for optimization: some cells can work well
even with shorter refresh intervals

7

Detecting faulty cells is the key

Manufacturer testing
Exhaustively test all cells before the module is shipped

Not applicable to aggressive usages (e.g. shorten refresh interval)

Online system-level testing
Detect all possible cells that are susceptible to failures for all
possible contents at boot-time

Enables aggressive optimizations after DRAMs are shipped

Challenges in practice (next slide)

Detecting Failures

8

Challenges of Online Testing

1. Internal memory addresses are
hidden and scrambled
→ Neighboring cells in the system
address space are not real neighbors

2. Faulty columns are remapped to a
redundant column
→ Neighboring relationship may
change time to time

Testing data-dependent failures online (w/o the proprietary
hardware specification) is very challenging

9

Detecting every-possible failures is a overkill
We only need possible failures with the current memory content

Key Observations

Failures are highly data-
pattern dependent

of failed rows with the current
content is 2.4X – 35.2X smaller
than every possible data-
dependent failure (“ALL FAIL”)
* couldn’t see how to do it. # of any possible data
pattern for a row would be 2^8K (a row == 8K cells)

10

MEMCON: tests one row for the current memory content

Row update → Test the row w/ the new content & low refresh rate

1. If no failures happen → refresh the row at the low refresh rate

2. If failures do happen → refresh the row at the high refresh rate

MEMCON: Design

A row is updated
(== data pattern of
this row is changed)

Test: Long refresh interval
(low refresh rate)

NG (use high refresh rate)

OK (use low refresh rate)

time
t0 t1

Update

Failure

11

A row cannot be accessed during a test
The content must be temporarily copied to a different region

to keep serving memory requests to that row

Copy to a different region → extra read and write requests
1. Copy the tested row into the temporal region

2. Copy the tested row again to the temp region after the test

→ Extra memory bandwidth, interfere with critical program
accesses

MEMCON: Challenges

Design Challenge: How to minimize the overhead of testing?

12

Overhead: Increased latency/energy due to extra copies

Cost-Benefit Analysis (1/3)

Option 1:
Test immediately after a write request
→ Cost vs. Benefit trade-off depends on
the write frequency (not adjustable)

Option 2:
Selective testing → Cost vs.
Benefit trade-off is adjustable

(E
ne
rg
y)

(E
ne
rg
y)

(E
ne
rg
y)

Row update

13

How to selectively test? When should the test overhead
should paid?

Cost with high refresh rate: CH(t) = αt

Cost with test + low refresh rate: CL(t) = CT + βt

Expr w/ real parameters: MinWriteInterval = 560ms, 864 ms

Cost-Benefit Analysis (2/3)

(α > β)

Predicting when the next write will come is the key

14

How CT is estimated from real values

 “Read and Compare” implementation
Copies the row to the memory controller and keep the original
row idle for the test period

CT = 1068 ns

cannot buffer many rows (due to space limitation)

“Copy and Compare” mode
Copies the row to a redundant row and keep the original row idle
for the test period

CT == 1602 ns

can buffer many rows

Cost-Benefit Analysis (3/3)

15

How to predict write interval for a given write?

→ Write intervals of real apps obey Pareto distribution

Write Interval Prediction (1/2)

Traced write intervals of real applications
using a FPGA-based memory controller

16

Pareto distribution: decreasing hazard rate (DHR) property
longer a page is not written to, longer it is expected to remain idle

Write Interval Prediction (2/2)

t
Write now

CIL (x)

Write

RIL (y)
Good balance

(accuracy vs. opportunity)

17

Baseline: Always refresh with 16 ms interval (no failures occur)

Upper bound: Always refresh with 64 ms interval (no failure
mitigation)

Evaluation based on Ramulator and memory trace using FPGA

Evaluation Results

18

How many refreshes are reduced?

Evaluation Results (1/2)

- Very close to the upper bound (a case
when all refreshes are 64 ms but no error
mitigation is applied)
- Different CILs do not affect the results
that much

- Time spent for refresh reduced to 20
to 30 % of the baseline
- Mis-prediction overhead is very small

19

Performance Improvement thanks to MEMCON
Workload speeds to due to less frequent refresh (that incurs less
resource contention inside DRAM)

Evaluation Results (2/2)

* Injected extra memory accesses to emulate the baseline (cycle accurate simulations infeasible)

- MEMCON significantly improves performance thanks to reduced refreshes
- MEMCON’s performance improvement increases with DRAM chip capacity

Refresh reduction vs. performance improvement

20

Other refresh optimization techniques
32 ms: always refresh@32 ms interval (middle of long and short)

RAIDR: mitigate every possible failures (assuming that the DRAM
internals are known)

64 ms: always refresh@64 ms interval (no failure mitigation)

Comparison with Other Techniques

Dynamically detecting refresh interval for each row
depending on the current content is the most effective

21

Reverse-Engineering of DRAM internal structures
[Jung et al., MEMSYS’16], [Khan et al., DSN’16], [Lee et al., SIGMETRICS’17]

MEMCON does not require DRAM internal structures such as how addresses
are scrambled

 Multi-Rate DRAM Refresh
[Liu et al., ISCA’12], [Liu et al., ASPLOS’11], [Qureshi et al., DSN’15],
[Venkastesan el al., HPCA’06]

Testing which cell to be refreshed with high/low rate is first done in MEMCON
(existing works use simple tests)

Refresh Optimization
[Chang et al., HPCA’14], [Isen et al., ISCA’09], [Mukundan et al., ISCA’13], [Nair
et al., HPCA’13], [Steucheli et al., ISCA’10]

MEMCON is orthogonal and can be used on top of these works (?)

Related Work

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21

