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ABSTRACT

Approximate memory is a technique to mitigate the performance
gap between memory subsystems and CPUs with its reduced ac-
cess latency at a cost of data integrity. To gain benefit from approx-
imate memory for realistic applications, it is crucial to partition
applications’ data to approximate data and critical data and apply
different error rates. However, error rates cannot be controlled in a
fine-grained manner (e.g., per byte) due to fundamental limitations
of how approximate memory can be realized. Due to this, if approx-
imate data and critical data are interleaved in a data structure (e.g.,
a C struct that has a pointer and an approximatable number as its
members), data partitioning may degrade the application’s perfor-
mance because the data structure must be split to separate mem-
ory regions that have different error rates. This paper is the first
to conduct an analysis of realistic C/C++ code to assess the impact
of this problem. First, we find the type of data (e.g., “int”, “struct
point”) that is assessed by the instruction that incurs the largest
number of cache misses in a benchmark, which we refer to as the
target data type. Second, we qualitatively estimate if the target data
type of an application has approximate data and critical data inter-
leaved. To this end, we set up three criteria to analyze it because
definitively distinguishing a piece of data as approximate data or
critical data is infeasible since it depends on each use-case. We an-
alyze 11 memory intensive benchmarks from SPEC CPU 2006 and
2 graph analytics frameworks, and show that the target data types
of 9 benchmarks are either a C struct or a C++ class (criterion 1).
Among them, two have a pointer and a non-pointer member to-
gether (criterion 2) and three have a floating point number and
other members together (criterion 3).

1 APPROXIMATE MEMORY ARCHITECTURE

1.1 Overview of Approximate Memory

Approximate main memory, or approximate memory, is a new tech-
nology to mitigate the performance gap between memory subsys-
tems and CPUs of computers. The main idea is to reduce the la-
tency of main memory accesses at a cost of the data integrity (i.e.,
the CPU may read a slightly different data from what has been
written before to the main memory) by exploiting design margins
that exist in many DRAM chips today. A design margin refers to
the difference between a design parameter defined in the specifi-
cation of a device and the actual value the device can be operated
with. For example, many DRAM chips can read stored data “al-
most” correctly with a few bit-flips (errors) injected to the data
when some wait-time parameters are shortened than the specifi-
cation [5], resulting in access latency reduction.

Approximate memory attracts much research interest due to the
ever-increasing performance gap between memory subsystems and
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Figure 1: DRAM command sequence of normal memory
(top) and approximate memory (bottom): In this example,
tRCD is shortened to 7.5 ns and tREF is prolonged to 128 ms,
both of which reduce the average latency.

CPUs [13]. Chang et al. [5] measure the relationship between er-
ror rates and latency reduction for a large number of commercial
DRAM chips, Das et al. [9] and Zhang et al. [32] prolong the inter-
val of refreshing! for strong memory cells to reduce the average
latency, and our previous work [1] estimates effect of approximate
memory to realistic applications without simulation by counting
the number of DRAM internal operations that induce errors.

1.2 Relaxing Timing Constraints

Approximate memory on DRAM can be realized by relaxing timing
constraints of DRAM chips. Although there are other types of ap-
proximate memory such as approximate flash memory for storage
that leverages multiple levels of flash programming voltages [12]
and approximate SRAM based on supply voltage scaling [4, 10, 30],
we focus on approximate DRAM using relaxed timing constraints.
A timing constraint refers to the specification of the interval be-
tween DRAM commands issued from the memory controller, and
relaxing a constraint means either shortening or prolonging an in-
terval (i.e., “violating” the specification). Relaxing a timing con-
straint of DRAM reduces the access latency to main memory but
may inject errors (bit-flips) to memory cells with an error rate de-
pending on how aggressively a constraint is relaxed and other as-
pects such as the chip temperature [16].

Figure 1 shows an example of DRAM command sequence in nor-
mal (exact) memory and approximate memory. It shows four repre-
sentative DRAM commands: refresh (REF), precharge (PRE), activa-
tion (ACT), and read (RD). In this example, a timing constraint called
tRCD is shortened from 12.5 ns to 7.5 ns, and one called tREF is pro-
longed from 64 ms to 128 ms. The memory controller must wait for
tRCD between a RD command and the preceding ACT command to
ensure that the activation has finished. Although tRCD is defined as

1A DRAM cell is a tiny capacitor and loses its charge as time goes by, thus it needs to
be periodically re-charged (also known as “refreshed”).
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Figure 2: An ACT command drives an entire row at the same
time with a given tRCD value, forcing the minimum approx-
imation granularity to be a row size (typically 4 KB or 8 KB).

12.5 ns in the DDR3-1600] specification [2], Chang et al. [5] found
that only a small portion of the cells experience errors even when
tRCD is shortened below it to serve the RD command quickly. tREF
is another timing constraint that specifies the longest interval be-
tween two REF commands, which refresh DRAM cells to prevent
them from losing stored data. Das et al. [9] and Zhang et al. [32]
propose to prolong this interval because many DRAM cells can re-
tain data for more than 64 ms in practice. Because prolonging tREF
increases the amount of time during which more useful commands
are served, it reduces the average DRAM access latency.

1.3 Approximation Granularity

In approximate memory that exploits design margins in the timing
constraints, the granularity of approximation cannot be smaller
than 4 KB (i.e., the same error rate must be applied to a continuous
4 KB or more). This is because a DRAM command drives many
memory cells in parallel to improve performance.

Figure 2 shows how an ACT command drives multiple memory
cells in parallel. The circles show an array of memory cells, where
each row has a wordline (WL) and each column has a bitline (BL).
A black cell has a value of 1 and a white cell has a value of 0, and
a gray one is in an intermediate state. An ACT command takes the
target row number as its parameter (for example, the 2™ row in
the figure). The WL of the target row is enabled to connect the cells
in the target row to the BLs. The electric charge of the cells whose
values are 1 pull up the voltages of the BLs from Vref (the refer-
ence value) to Vref+, which takes up to tRCD. Finally, the sense
amplifiers sense the voltages of the BLs to fetch the values in the
cells. If tRCD is reduced from 12.5 ns to say 7.5 ns, the sense am-
plifiers may fetch wrong values because the voltages of the BLs
have not yet reached to Vref+ as shown in the right of the figure.
The same discussion is applicable to “0” cells and Vref-. Because a
shortened tRCD is applied to an entire row, it forces the granularity
of approximation to be the size of a row, which is typically 4 KB or
8 KB. Therefore, we cannot control the error rate with a granular-
ity smaller than 4 KB. Similar discussions can be applied to other
timing constraints as well such as tREF and a REF command that
reads an entire row at a time to refresh the cells in the row [15].

Although this work focuses only on DRAM, this limitation is
also applicable to other memory technologies because the require-
ment of performance is fundamental due to the ever-increasing
performance gap between memory subsystems and CPUs. For ex-
ample, phase change memory (PCM) organizes memory cells as
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Figure 3: Data partitioning: (1) identify critical data (size,
mat) and approximate data (mat[0], ..., mat[size-1]), and (2)
map them to memory regions that have different error rates.

an array [23] and injects electric pulses to an entire row at once. If
we consider realizing approximate memory with PCM, for exam-
ple by reducing the length of pulses for writing, the approximation
granularity is still limited by its row size.

2 DATA PARTITIONING AND CHALLENGE
2.1 Data Partitioning

Executing an application on approximate memory requires two ad-
ditional steps compared to executing it on normal memory. First,
we must identify which parts of the application’s data are approxi-
mate data or critical data. This prevents errors from being injected
into critical data (e.g., pointers) and the application can yield mean-
ingful results. Second, we must map approximate data and critical
data to different memory regions that have different error rates.
We refer to these two steps as data partitioning.

Figure 3 depicts an example of data partitioning. Assume that
the application can yield acceptable results even with some er-
rors injected to the floating point numbers stored in mat, then we
can identify each element of mat (mat[@], .., mat[size-1]) as ap-
proximate data and the other variables as critical data. Note that
‘double* mat’ itself is critical data because it is a pointer.

After the identification, the approximate data and critical data
must be mapped to memory regions with different error rates. The
size of each memory region must be at least 4 KB because the ap-
proximation granularity (the granularity at which error rates can
be controlled) is 4 KB as discussed in Section 1.3.

2.2 Challenge: Interleaved Criticality

The challenge of data partitioning is that it can impose much over-
head when approximate data and critical data are interleaved in a
single data type. The two kinds of data are defined as interleaved
when they co-locate inside one element of a C struct or a C++
class.? Figure 4 shows an example of interleaved approximate
data and critical data. The struct tree_node data type has both
approximate data and critical data in it, and nodes points to an ar-
ray of struct tree_node. Applying data partitioning to this code
requires to map the first 20 bytes (an int and two pointers) and
the last 8 bytes (a double) of a struct node to separate memory
regions due to the large approximation granularity, splitting the

The only difference of them is the access control of members in typical C/C++ im-
plemenetations (for example, even a C struct can have member functions in gcc).
Therefore, we only mention C struct hereafter without loss of generality.
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struct tree_node {
int id; // id of the node, critical
struct tree_node +r; // pointer to the right child, critical
struct tree_node +1; // pointer to the left child, critical
double score; // score of this node, approximate

b

int size = 1000 = sizeof(struct tree_node);
struct tree_node *nodes = malloc(size);

Figure 4: Approximate data and critical data interleaved in
a single C struct: applying data partitioning to this code im-
poses much overhead due to reduced access locality.

region pointed to by nodes to many pieces. This can dramatically
degrade the performance due to reduced access locality.

Prior works [8, 18, 31, 33] propose to convert “an array of struc-
tures” to “a structure of arrays” for improving access locality. For
example, the code in Figure 4 can be converted to have a distinct
array for each member of struct tree_node, and then the array
for score can be mapped to a consecutive memory region with
high error rate. However, this method mitigates the data partition-
ing problem only when the conversion itself does not degrade ac-
cess locality. Assume that r, 1, and score in Figure 4 are accessed
closely in time (for example, the code might change which child
to traverse next depending on the score of the current node), then
splitting r, 1, and score into different arrays can degrade the ac-
cess locality and performance.

3 SOURCE CODE ANALYSIS

The research question we tackle is stated as: Is data partitioning
a real concern for realistic applications? To answer it, we analyze
source code of widely used benchmarks and show that many appli-
cations potentially have approximate and critical data interleaved.

3.1 Analysis Methodology

Approximate memory is the most effective when an application’s
data that incur many cache misses are stored on it. With this in
mind, our analysis consists of two steps:

(1) First, we find a data structure (e.g., a C struct) accessed
by an instruction that incurs the largest number of cache
misses among a target application using hardware perfor-
mance counters.

(2) Second, we apply our criteria to qualitatively estimate the
probability that the data structure found has approximate
data and critical data interleaved in it.

In the first step, we measure the number of cache misses per
instruction using Precise Event Based Sampling (PEBS) on Intel
CPUs. PEBS is an enhancement of normal performance counters
that uses designated hardware for sampling to reduce the skid be-
tween the time an event (e.g., cache miss) occurs and the time it is
recorded [3, 29]. The small skid enables pinpointing which instruc-
tion in an application binary causes many cache misses. We exe-
cute a benchmark with its sample dataset using linux perf, and the
actual command line is ‘perf record -e r20D1:pp -- benchmark’.
The parameter r20D1 : pp specifies a performance event whose event
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31£8: add %r10,%rax
31fb: cmp Yirax,hr9
3ife: jbe 3258 <primal_bea_mpp+0x£f8>

if ( arc->ident > BASIC )
48.58 |[3200: mov 0x18 (%rax) ,%edi
3203: test Yedi,%hedi
3205: jle 31f8 <primal_bea_mpp+0x98>

Figure 5: Sample output of perf report: It shows an instruc-
tion, the offset of the instruction from the head of the bi-
nary, and the percentage of cache misses that it incurs (if
any), from right to left. The C code, if ( arc->ident > BASIC),
corresponds to the assembly code below it.

numberis 0xD1 and the umask value is 0x20, which “counts retired
load instructions with at least one uop that missed in the L3 cache”
(described in Table 19.3 of [14]). The parameter benchmark is re-
placed with an actual command line to execute each benchmark.
Figure 5 shows a sample output of perf report, executed after
a measurement by perf record. The measurement is done for a
benchmark called mcf and the details of the benchmarks we an-
alyze are described in Section 3.2. Each line shows, from right to
left, an instruction, the offset of the instruction from the head of
the binary, and the percentage of cache misses it incurs (if any).
The C code, if ( arc->ident > BASIC ), corresponds to the lines
of assembly code below it.

Figure 5 shows that the instruction that incurs the largest num-
ber of cache misses in this application is mov 0x18(%rax) ,%edi.
By mapping the assebmly code in Figure 5 with the C source code,
we can find that the mov instruction accesses the ident member of
a C struct named arc3. We refer to the type of arc, struct arc,
as the target data type because it is the target of the analysis in
the next step. Please carefully note that, although this result tells
that the ident member alone incurs many cache misses, it does
not mean that we can split this struct to exclude ident and put
an array of ident to approximate memory. Memory accesses to
the other members of the same struct may hit the cache only be-
cause cache misses to ident fetch the whole part of the struct to
main memory, in which case this splitting doubles the number of
cache misses. When the assembly code is more complex and the
target data type is not obvious, we resort to human labor to find it
because systematically reverse-engineering an arbitrary binary to
C/C++ code is not the main focus of this work. The same method-
ology is applicable to a template function as well because there is
an independent piece of assembly code for each instantiation of it
(i-e., no type-ambiguity exists in assembly code).

In the second step, we analyze the target data type of each
benchmark to estimate if it has approximate data and critical data
interleaved. The issue is that it is infeasible to definitively distin-
guish approximate data and critical data without concrete use-
cases and expert knowledge of the benchmark. There are some
typical cases (e.g., pointers are typically critical data, floating point
numbers are typically approximate data), but even these might be
overridden by particular code or use-case. Therefore, instead of

3In fact, ident is placed in the 0x18™ byte of arc and BASIC is a compile-time constant
whose value is 0. This supports our guess that the mov instruction copies ident to %edi
and the test instruction following it compares ident and BASIC (constant 0).
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definitively distinguishing them, we set up criteria to qualitatively
predict the probability that a target data type has approximate data
and critical data interleaved:

C1: Is the target data type a struct or a class?

C2: If C1 is yes, does it include a pointer and at least one
other member with non-pointer type?

C3: If C1is yes, does it include a floating point number and
at least one other member?

As the number of criteria applicable to a target data type in-
creases, so does the probability that it has approximate data and
critical data interleaved. Please note the following two things. (1)
If a target data type is a nested struct (i.e., a struct that has an-
other struct in it), we “flatten” it so that every member becomes a
non-struct type (e.g., int, charx) before applying the criteria. This
reproduces how anested struct is mapped to a memory region. (2)
We exclude member functions because they are stored in function
tables located in a separate memory region from data members in
typical C++ implementations, meaning that they are already par-
titioned and irrelevant to our analysis. For example, if a class has
two integers and a function as its members, we consider the two
integers as the only members and the analysis result for this data
type is “C1 = Yes, C2 = No, C3 = No”.

The intention of each criterion is as follows. [C1]: If the target
data type is not a struct, we can allocate the whole part of it (or
an array of it) either in normal memory or approximate memory
data and no data partitioning is needed. On the other hand, if it
is a struct, it might include approximate data and critical data
interleaved. [C2]: If the target data type includes a pointer as its
member, it is highly possible that the pointer is critical data be-
cause even a single bit-flip invalidates it. If it includes other mem-
bers with non-pointer types as well, then these members might
be approximate data, in which case approximate data and critical
data are interleaved. [C3]: If the target data type includes a floating
point number, it is possible that the floating point number is ap-
proximate data. If it includes other members that are critical data,
then the target data type has approximate data and critical data in-
terleaved. Note that C3 is not symmetric with C2 because a pointer
is most probably critical data, while a floating point number can ei-
ther be approximate data or critical data depending on each appli-
cation and use-case. Therefore, C2 requires a non-pointer member
along with a pointer member, while C3 only requires a member
with any type along with a floating point number.

3.2 Analyzed Benchmarks

Table 1 describes the benchmarks we analyze. Each line shows a
benchmark’s name, its domain, and the cache miss rate with the
percentage of cache misses incurred by the instruction that incurs
the largest number of cache misses. For example, “74.8 % (88.8 %)”
means that the number of cache misses divided by the number of
memory accesses is 0.748, and the number of cache misses incurred
by a certain instruction divided by the number of total cache misses
is 0.888. Note that the latter can be any value between 0 and 1 in-
dependently of the former. The values are measured in the envi-
ronment in Table 2 and the -03 option is used to build the binaries.

From SPEC CPU 2006 [7], we analyze 11 benchmarks whose
cache miss rates are more than 20%. We use the largest dataset
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Table 1: Analyzed Benchmarks: 11 from SPEC CPU 2006 (we
select ones written in C/C++ and the cache miss rates are
more than 20%) and 2 graph analytics frameworks.

Name Domain Cache Misses
milc quantum simulation 82.6% (9.61 %)
sjeng game Al (chess) 74.5% (44.9 %)
libquantum quantum computing 54.6% (47.4 %)
Ibm fluid dynamics 49.2% (44.5 %)
omnetpp discrete event simulation | 47.9% (6.62 %)
soplex linear programming 41.2% (31.5%)
gobmk game Al (go) 38.4% (39.3 %)
gee ¢ compiler 36.8% (22.8 %)
mcf optimization 33.7% (48.6 %)
dealll finite element analysis 33.6% (67.1 %)
namd molecular dynamics 21.0% (11.3 %)
Graph 500 graph analytics (bfs) 74.8 % (88.8 %)
GraphMat | graph analytics (PageRank) | 47.7 % (53.5 %)

Table 2: Experiment Environment

CPU Intel Xeon Silver 4108 (Skylake, 8 cores)
Memory DDR4-2666, 96 GB (8GB x 12)
LLC 11 MB (shared across all the cores)
oS Debian GNU/Linux 10
kernel 4.19.0-6-amd64
gee/g++ 8.3.0 (Debian 8.3.0-6)

named ref to measure the cache miss rates. We exclude others
because approximate memory is not beneficial for CPU intensive
benchmarks with low cache miss rates. We also exclude ones writ-
ten in Fortran because the necessity of data partitioning is affected
by the programming style, which is largely different in each pro-
gramming language. This work only focuses on C/C++ that are
more often used in modern applications than Fortran.

We also analyze two graph analytics benchmarks, Graph 500 [19]
and GraphMat [27]. The former is used to measure the perfor-
mance of supercomputers, thus the speed is the only concern. The
latter, on the other hand, is designed to preserve programmability
while maintaining the speed as much as possible. For Graph 500,
we generate the dataset with the scale parameter set to 19 and
execute breadth first search on a single core. We use the reference
implementation provided in their website [19]. For GraphMat, we
convert the ego-Twitter dataset of Stanford Large Network Dataset
Collection [17] into a GraphMat-compatible format and calculate
PageRank on it. The source code is taken from the github reposi-
tory* and we run it on a single core.

4 RESULTS

Table 3 shows the analysis results. Each row shows a benchmark,
the target data type of it, and applicability of the three criteria to
the benchmark (Y’ means that the criterion is applicable, and ‘N’
means not applicable). If C1is ‘N’ for a benchmark, we put ‘-’ for
C2 and C3 because these two criteria are evaluated only if C1 is

*https://github.com/narayanan2004/GraphMat
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Table 3: Results of our analysis

Name Target Data Type Ci|C2|C3
milc struct complex Y | N|Y
sjeng struct QT Type Y | N|N
libquantum | struct quantum_reg_node_struct | Y | N | Y
Ibm double N | - -
omnetpp class cChannel Y | N| N
soplex struct Element Y | N | N
gobmk Hashnode (struct hashnode_t) Y| Y| N
gee struct rtx_def Y | N| N
mcf arc_t (struct arc) Y| Y| N
dealll double N | - -
namd struct CompAtom Y | N|Y
Graph 500 int64_t N | - -
GraphMat float N | - -

Y’. In the target data type column, we put the original type inside
parentheses if it is aliased by a typedef declaration. For example,
“arc_t (struct arc)” means that the target data type is a C struct
named arc, and it is aliased as arc_t. The benchmarks are executed
in the environment described in Table 2. For all the benchmarks,
the instruction that incurs the largest number of cache misses ex-
ists in their own code and not in any standard C/C++ libraries.

Observation 1: The target data type is a struct or a class
in 9 SPEC CPU 2006 benchmarks out of 11 analyzed. Among
them, mcf and gobmk have a pointer and a non-pointer member
in their target data types, and milc, libquantum, and namd have
a floating point number and another member in their target data
types. For the former group, if one of the members other than the
pointer is approximate data, they have approximate data and crit-
ical data interleaved because the pointer is most probably critical
data. For example, our previous work [1] shows that mcf can yield
the same result as the error-free one even when a member of arc_t
is approximated. For the latter group, if the floating point number
is approximate data (which is the case in many applications) and
another member is critical data, they have approximate data and
critical data interleaved.

Observation 2: There is no benchmark whose target data
type has both a pointer and a floating point number, although
this type of benchmarks (if exist) have the highest probability of
having approximate data and critical data interleaved. This might
be because we exclude Fortran, which tends to be used for numeri-
cal applications. Investigating the relationship between suitability
for approximate memory and the programming language / style
used in an application is a part of our future work.

Observation 3: The target data type is a non-struct type in
both of the graph analytics frameworks. Although their source
code have C structs that appear to have approximate data and
critical data interleaved, these structs do not incur many cache
misses. We presume that highly optimized code for performance
have less probability of including approximate data and critical
data interleaved in a single data type. Investigating the relation-
ship between the suitability for approximate memory and the cat-
egory of each application (e.g., highly optimized graph analytics)
is another important aspect of future work.
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5 DISCUSSIONS
5.1 Threats to Validity

Our analysis methodology cannot be applied as-is when a member
of a C struct is passed to a function by reference. For example in
Figure 6, the same function (f) is called either by passing &s1.v or
&s2.v as its argument. Finding the data type that the memory re-
gion pointed to by fp belongs to requires an investigation of stack
traces and points-to analysis [26].

struct S1 {
double v; // probably approximate
double vv; // probably approximate
}s1;

struct S2 {
double v; // probably approximate
int «p; // probably critical

} s2;

void f(double «fp) {

do something and return the result through «fp

f(&s1.v); // (1): invoke f by passing s1.v by reference
f(&s2.v); // (2): invoke f by passing s2.v by reference

Figure 6: Calling the same function by passing members of
different structs by reference. Identifying the data type that
“fp belongs to requires stack traces and points-to analysis.

Although it seems more natural for a function to take a pointer
of a whole struct such as ‘void g(struct S1 =*sp)’, this may
appear in some cases such as when a library function returns the
result through a pointer. In our case study, the original data type
was identifiable without hitting this issue in all the benchmarks.

5.2 Analyzing Performance Implication

This paper is focused on estimating if an application has approx-
imate data and critical data interleaved, but we defer quantitative
analysis of how the application’s performance is degraded if we
really partition approximate data and critical data into separate
memory regions. One method to conduct this analysis is to actually
split the target data type and measure the slowdown of the appli-
cation on a real machine. However, the issue is that although much
work have been done on structure splitting, structure peeling, and
structure reordering and data partitioning is essentially the same
as structure splitting, there is no off-the-shelf tool to support it as
far as we know. One of the reasons is that it is very troublesome
to implement these techniques so as to work correctly in general
cases. For example, old versions of gcc support structure reorder-
ing, but the functionality was removed because it “did not always
work correctly” [11].

An alternative method to qualify how an application slows down
after data partitioning is to use heuristic metrics that estimate the
access locality between two structure members. Prior works on
leverage these metrics to find which members should be in the
same structure to maximize the performance improvement. For
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example, Ye et al. [31] introduce a metric called access affinity be-
tween two members u and v of a structure. Given a memory trace,
it is increamented by one if there is a pair of memory accesses to
u and v where the number of memory accesses to other members
in-between is less than a threashold. Because this metric captures
access locality of two members of a structure, it can also be used to
estimate how harmful to split two members into separate memory
regions. Other studies such as [18, 21] propose similar metrics. Ap-
plying these metrics is easier than implementing data partitioning
because they are based on memory traces of the original program.

6 RELATED WORK

To the best of our knowledge, this work is the first to investigate
the data partitioning problem for approximate memory. We discuss
related work in the context of error rate controlling.

Nguyen et al. [22] propose a method that partially mitigates the
data partitioning problem. It transposes rows and columns of data
layout inside DRAM so that a chunk of data is stored across many
rows that have different error rates. This enables protection of im-
portant bits (e.g., the sign bit of a floating point number) while ag-
gressively approximating less important bits. This mechanism is
effective for DNNs because they require the whole part of a large
weight matrix at once and the number of memory accesses do not
increase regardless of the data layout. However, it is not effective in
general cases where memory is accessed with smaller granularity.

Mapping data into memory regions with different error rates
depending on its criticality is commonly proposed. Liu et al. [20]
partition a DRAM bank into bins with proper refresh interval and
ones with prolonged refresh interval. Each data is store into ei-
ther type of bins depending on the criticality specified by the pro-
grammer. Although they do not discuss the minimum bin size, it
cannot be smaller than a DRAM row (typically 4 KB or 8 KB) as
we discuss in Section 1.3. Chen et al. [6] propose a memory con-
troller that maps data into different DRAM banks with different
error rates depending on the criticality of the data. Because this
method is bank-based, the approximation granularity is limited to
the bank size. A typical DDR3/DDR4 DIMM module has 2 GB to
16 GB with either 8 or 16 banks, resulting in a typical bank size
of 256 MB to 2 GB. Raha et al. [24] advance a previous work [20]
by measuring each bin’s error rate at a given prolonged refresh
interval and assigning them to approximate data in the ascending
order of the error rate. They realize the bin size (or “page size” in
their terminology) of 1 KB by measuring the average error rate per
1 KB. Although this approach could be further pursued to realize
smaller page sizes, it still cannot control error rates per byte as it
just measures them to use proper pages for given criticality.

Applying lower supply voltages to store approximate data is of-
ten done especially with SRAM [4, 10, 30]. Esmaeilzadeh et al. [10]
propose a dual-voltage SRAM architecture to implement approxi-
mate data types proposed by Sampson et al. [25]. This architecture
also suffers from the same problem we discuss in this paper be-
cause it changes the supply voltage at the row granularity of an
SRAM subarray, although a row of a subarray is smaller than a
row of the entire SRAM.

Tovletoglou [28] et al. propose an end-to-end framework that
ensures the availability of VMs hosted on approximate memory.

Soramichi Akiyama

The framework provides an OS support and its APIs to allocate
approximate data to memory control units operated by reduced
refresh rate, while maintaining the ability to exploit memory-level
parallelism. Because the framework leverages the existing memory
allocators implemented in Linux, the minimum size of a critical
/ approximate memory region is 4 KB, making it suffer from the
same problem we discuss in this paper.

7 CONCLUSIONS AND FUTURE WORK

Approximate memory is a new technique to reduce the main mem-
ory access latency, but has a potential problem in data partitioning
when approximate data and critical data are interleaved in appli-
cations’ data structures. We are the first to assess the impact of
this problem by means of analyzing realistic C/C++ code. We in-
troduce three criteria to qualitatively estimate if the data type that
incurs the largest number of cache misses in an application has ap-
proximate data and critical data interleaved, and applied them to 11
SPEC CPU 2006 benchmarks and 2 graph analytics frameworks. As
aresult, we found that the data type that incurs the largest number
of cache misses are either a C struct or a C++ class in 9 bench-
marks. Among them, two have a pointer (possibly critical) and a
non-pointer member interleaved and three have a floating point
number (possibly approximate) and other members interleaved.

Future work includes two directions: (1) categorizing workloads
by their domains, programming language / styles used and other
aspects, and (2) quantitatively analyzing the performance implica-
tion of data partitioning to each workload. For the second part, no
off-the-shelf tool that enables data partitioning is available even
though much work have been done on structure splitting, mostly
because implementing structure splitting for general cases is very
difficult. Instead, we can use existing metrics [18, 21, 31] that pre-
dict the benefit of structure splitting for a given structure.
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