VIORDIT7 - VSO REE IOV IV MER

Practices for Software and Cloud Development Project |

Soramichi Akiyama

Bl =8

akiyama@oci.i.u-tokyo.ac.jp

Last Time in This Class...

= We learned why cloud is useful and how it is implemented

Why is Cloud Important/Useful? (1/4)

= A short time ago in an apartment so, so close.... (inspired by [1])

= My website was ACTUALLY hosted in-house on a small Linux machine

= We will walk through importance of cloud computing by elaborating why the
design of my website back then was not practically good

Soramichi Akiyama (Rl)
eniDn | ST T T

My apartment
back then

Q.
—>

[1] https://en.wikipedia.org/wiki/Star_Wars_opening_crawl|
[2] https://ja.wikipedia.org/wiki/%E5%AE%89%E 7%94%B0%E8%AC %9B%E5%A0%82

Photo cited from [2]

= Today’s topic

Recap:

Cloud can reduce TCO (Total Cost of Owning) by
managing computing resources on users’ behalf

Cloud models: SaaS, PaaS, laaS

Cloud deployment models: Public clouds, Private cloud
(on-premise, off-premise)

Cloud internal: Virtualization is key

= Reliability of cloud itself / services running on cloud

What is Reliability?

'R »

= A reliable system is... &

= Available with high confidence

= Easily maintainable

= Availability (BJFH%) € We focus on this today

= An available system is accessible and usable as expected

= Maintainability (a.k.a. Serviceability, fR~F%)

= A maintainable system can be fixed when broken

Availability Metrics

= Availability does not just mean “up and running”

= What does “running” mean? What if it is up but super slow?

User Requests
. . >
= Metric 1: Based on uptime O Web
_ m > Application
. Uptime He,

(Uptime + Downtime)

. . User sent 3 requests,
= Metric 2: Based on the number of successful queries but only 2 of them succeeded:

Availability == 67 % (2/ 3
The number of successfully handled queries vatiabiiity 7% (2/3)

The number of incoming queries

= More useful than (1) when the system’s states are not binary (“on” or “off”)

= Example scenario: A web app slows down when there are too many users, but still not down

Nines Notation

= Availability is often specified by nines notation

= Example: 99.99 % uptime ("4 nines”) means the system is up for 99.99% of the time

Nines

%

Downtime
in 1 year

Two Three Four Five Six Seven
99 99.9 99.99 99.999 99.9999 99.99999
4 days 9 hours 1 hour 5 mins 30 seconds | 3 seconds

= Adding one nine requires to reduce downtime to 1/10

" 99.99 % uptime ==0.001 % downtime
= 99.999 % uptime == 0.0001 % downtime

N

Service Level Objectives (SLO)

® Objectives of reliability metrics

= Defined internally to monitor the system’s health 99 percentile ———
50 percentile
= Example 1: Query success rate >= 99% [e T
>~
= Example 2: 99 percentile of query latency < 100 ms % ---
S
1 50 99
: : . ery ids sorted by latenc
® SLOs guide development / maintenance decisions Query | Y Y

= Without SLOs: “The system looks somewhat slow these days... but should we do something?”

= With SLOs: “99 percentile latency is reaching almost 100 ms. We should investigate the
bottleneck and resolve it immediately.”

Service Level Agreements (SLA)

¥ to pay back money to somebody which they have spent or lost

® Agreements of reliability metrics

» reimburse something We will reimburse any expenses incurred.

u Contracted between users and service providers « reimburse somebody (for something) You will be reimbursed for any

Reimburse

loss or damage caused by our company.

m SLA violations often come with penalties — — —
https://www.oxfordlearnersdictionaries.com/definition/english/reimburse

= Example: Guarantee 99 % uptime, and reimburse the money if violated

= SLA!=SLO

m SLO is internal, while SLA is external

= A system may have no SLA even if it has SLOs (e.g., You have no SLA on using a search engine,
while they still have internal SLOs)

= Defining an SLA involves in business decisions as well as technical ones

Example of Real SLA (Amazon EC2)

General Service Commitment

AWS will use commercially reasonable efforts to make the Included Services each available for each AWS region with a Monthly Uptime Percentage — 4 nines u ptl me ag reement
of at least 99.99%, in each case during any monthly billing cycle (the "Service Commitment”). In the event any of the Included Services do not meet

the Service Commitment, you will be eligible to receive a Service Credit as described below. k'

Service Credits

Service Credits are calculated as a percentage of the total charges paid by you (excluding one-time payments such as upfront payments made for

Reserved Instances) for the individual Included Service in the affected AWS region for the monthly billing cycle in which the Unavailability occurred Reim bu rsement pOI Icy

in accordance with the schedule below. /

Monthly Uptime Percentage Service Credit Percentage /
Less than 99.99% but equal to or greater than 99.0% 10%
Less than 29.0% but equal to or greater than 95.0% 30%
Less than 95.0% 100%

https://aws.amazon.com/compute/sla/

Defining Good SLAs

Black Friday (shopping)

u We”—deflned SLAS are nOt perfeCt From Wikipedia, the free encyclopedia

® Nine notations are avera ges For other uses, see List of Black Fridays and Black Friday (disambiguation).

Black Friday is a colloguial term for the Friday following Thanksgiving Day in the United
m Taki ng averages blurs what is hap pen I ng States. Many stores offer highly promoted sales on Black Friday and open very early
(sometimes as early as midnight?), or some time on Thanksgiving Day.

Black Friday has routinely been the busiest shopping day of the year in the United States
since at least 2005 211411

https://en.wikipedia.org/wiki/Black_Friday_(shopping)
® Failures that are the same in nine notations but different in reality
1. Server outage in Black Friday vs. in a normal day
2. Complete outage vs. graceful degradation (system kind of working but out of SLA)

3. A second of separate downtime everyday vs. 30 seconds of continuous downtime once in a month

(*) Failures 1 and 2 are taken from: 9
Jeffrey C. Mogul and John Wilkes, “Nines are Not Enough: Meaning Metrics for Clouds”, HotOS°20

[Aside] Error-Budget

m The difference between an SLO and the actual metric value
= Example: SLO of 99 percentile latency is 100 ms, while it is currently 60 ms

—> This system has 40 ms error-budget (or slack)

® Error-budget is useful as a common language of developers and operators

= Developers: adding new features first, reliability second

m Qperators: the other way around

= Quantitative error-budget can help balancing the two (e.g., 40 ms error-budget means that a new

feature can probably be added without much concerning the latency)

“More on error-budget: Site Reliability Engineering, O’REILLY

Sité

Reliability
Engineering

Improving Reliability (1/2)

® Traditional way

= |mprove the reliability of underlying components to make the whole system reliable

—_ o

= Example: Use highly reliable capacitors (3 277 2 %) inside an enterprise-class power supply

105°C BEA—H—& electrolyticd>>UEEAL. 25
HHEOASBREFTTHILBEICED. 94% Bl EONEFERL
£7,

https://www.corsair.com/ja/ja/%E3%82%AB %E3%83%86%E3%82%B4%E3%83%AA%E3%83%BC/%E8%A3%BD %E5%93
%81/%E9%9B%BB%E6%BA%90%E 3%83%A6%E3%83%8B %E3%83%83%E 3%83%88/axi-series-config/p/CP-9020087-JP

= |t is the only way in many non-software systems

= Physical components cannot be replaced or switched easily once deployed

11

Improving Reliability (2/2)

m Software engineers’ way (modern? way)
= “Embrace” failures by preparing for them

= Example: Run two instances of your web application and switch between them when one of them
fails, instead of running it on a super reliable server (i.e., fail over)

Active

A Embrace
PP 2 + [uncountable] the act of accepting an idea, a proposal, a set of
beliefs, etc, especially when it is done with enthusiasm
« the country’s eager embrace of modern technology
https://www.oxfordlearnersdictionaries.com/definition/english/embrace_1

12

Active Stand-by

App App

Why Software Engineers” Way is Preferrable?

® So many components exist in cloud datacenters

» Fugaku (B{F) supercomputer has more than 7,500,000 cores! (*)

= Note: cloud datacenters do not reveal how many components they have, so we use Fugaku as an
alternative example

e
2A=)\—->YEa1—% [E&]

® Things certainly break in such large scale
https://www.fujitsu.com/jp/about/businesspolicy/tech/fugaku/

® Even a very small failure rate does matter in large scale

= Toy Example: Suppose 1% of HDDs fail in a year
= Then 1,000 HDDs fail in a year if a cloud data center contains 100,000 of them!

13

(") https://www.top500.org/lists/top500/list/2020/11/

Real Numbers of HDD Failures

® Backblaze (a cloud storage provider) observed
1,302 failing HDDs in 2020

= Qut of 162,299 of them (0.93 %)

m Detailed observations and test conditions can be

Backblaze Hard Drive Failure Rates for 2020

Reporting period 1/1/2020 - 12/31/2020 inclusive

found at: https://www.backblaze.com/blog/backblaze-
hard-drive-stats-for-2020/

Drive Drive |Avg Age Drive
MFG Model Size Count [(months) Drive Days | Failures | AFR
HGST |HMS5C4040ALEG40 | 4TB 3,100 | 56.65 1,083,774 8 0.27%
HGST |HMS5C4040BLEG40 | 4TB 12,744 | 5043 4,663,049 34 0.27%
HGST |HUH728080ALE600 | 8TB 1,075 | 34.85 372,000 0.29%
HGST |HUH721212ALE600 | 12TB 2,600 | 15.04 820,272 0.31%
HGST |HUH721212ALE604 | 12TB 2,506 | 3.78 275,779 9 1.19%
HGST |HUH721212ALNG604 | 12TB 10,830 | 21.01 3,968,475 50 0.46%
Seagate |ST4000DMO00 4TB 18,939 | 62.35 6,983,470 269 1.41%
Seagate |ST6000DX000 6TB 886 | 68.84 324,275 2 0.23%
Seagate |ST8000DM002 8TB 9,772 | 51.07 3,584,788 91 0.93%
Seagate |ST8000NMO055 8TB 14,406 | 41.34 5,286,790 177 1.22%
Seagate |ST10000NMO0086 10TB 1,201 | 38.73 439,247 16 1.33%
Seagate |ST12000NMO0007 12TB 23,036 | 29.78 | 11,947,303 339 1.04%
Seagate |ST12000NMO0008 12TB 19,287 | 9.76 5,329,149 148 1.01%
Seagate |ST12000NMO001G 12TB 7,130 | 6.08 1,296,149 30 0.84%
Seagate |ST14000NMO001G 14TB 5987 | 2.89 454,090 13 1.04%
Seagate |ST14000NMO0138 14TB 360 1.56 5,784 0 0.00%
Seagate |ST16000NMO001G 16TB 59 | 12.93 21,323 1 1.71%
Seagate |ST18000NMO000J 18TB 60 | 3.27 5,820 12.54%
Toshiba |MD04ABA400V 4TB 99 | 67.29 36,234 0 0.00%
Toshiba |MGO7ACA14TA 14TB 21,046 | 7.65 4,103,823 102 0.91%
Toshiba |MGO7ACA14TEY 14TB 160 122 2,562 0 0.00%
Toshiba |MGOSACA16TEY 16TB 1,014 | 214 33,774 0 0.00%
WDC WUH721414ALE6L4 | 14TB 6,002 1.68 229,861 1 0.16%

Totals | 162,299 51,267,791 | 1,302 | 0.93%

¢ BACKBLAZE

https://www.backblaze.com/blog/backblaze-hard-drive-stats-for-2020/

Reliability in Layers

= Reliability-improving measures are taken in different layers

® Fach measure embraces failures in the underlying layer(s)

We will walk through the layers
to see how they embrace failures
Note: Bodies of work exist for
each layer, but we can only skim
representative techniques due to

time constraints

Application

VM / Container

Middleware

OS

Hardware

Building, electricity, ...

} Software architecture level

—

)\

J |

- Platform level

— Infrastructure level

L Data center level

15

Reliability in Software Architecture Level

m Software architecture

= Principles and best practices on how to structure complex software

= Purposes: Easy maintainability, easy understandability, ...

= Examples: Object-oriented, MVC, ...

Application

m Refer to Aoki-sensei’s lecture about MVC . .
VM / Container Middleware

oS
m Reliable software architecture Hardware
= A software architecture that aims to be highly reliable Building, electricity, ...

= Prominent example: microservice architecture

]» Software architecture level

- Platform level

~ Infrastructure level

L Data center level

16

Microservice Architecture: Overview

® Constructing a (web) application as a swarm of micro services
= Each service implements a single functionality
m Fach service runs in a separate process / container
= Communications among services through loosely coupling mechanisms

= HTTP + REST APIs, gRPC, ...

Service 2 —»| Service 4

Service 5 ——» Out

Service 3

Application 17

Straight-forward Implementation of MVC Architecture

= One “monolithic” process for each component

= Runs in a single process, although modularized as functions and classes (of course)

Monolith

= Functionalities invoke each other using normal function calls (—1%5)

View

Model

Controller

def check_existing_user(name):

def check_duplicate_email(email):
def register_new_user(name, email, password): function calls

if check_existing_user(name):

if check_duplicate_email(email):

18

Controller.py

Microservice Implementation of MVC Architecture

m EFach module is divided into micro services
= Each module (service) runs in a separate process

" Modules communicate with REST / http or alike even between the ones inside the same
component (e.g., controller)

Controller

i REST check_existing_user [—»

REST register_duplicate_email [—»

1
'
'
]
'
'
'
'
'
]
'
'
:
—P reglster_new_user :
'
'
'
'
'
]
'
'
'
'
'
]
'
'

19

Microservices Offer Higher Reliability (1/2)

® Each service can be independently scaled
= Ex: Service 1 relies on Service 2 and the latter has turned out to be more compute-intensive

m |ncrease # of containers for Service 2 while that of Service 1 can remain the same

Scale-out Service 2 Service 2
Service 1 —® Service 2 ‘ Service 1 Service 2
Service 2

® This is trivial because...
m Fach service is already a separate process or a container

= Services communicate with REST APIs and only loosely coupled

20

Microservices Offer Higher Reliability (2/2)

® Each service can be independently rebooted
m Ex: Service 1 relies on Service 2 and the container running Service 2 fails somehow

m Reboot only Service 2 while other parts are continuously working

A4

Ser><e 2 —»| Service 4

/7 N\
In —1+¥»| Service 1 Reboot

Service 5 » Out

Service 3

® This is also trivial because...
= Rebooting Service 2 is just a lunch of a new process or a container

= QOther parts (e.g., Service 1 = Service 3 = Service 5) are independent from Service 2 by design 91

Adoptions of Microservice Architecture

m Netflix
m https://www.youtube.com/watch?v=DvLvHnHNT2w English
= Uber

m https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a English

® Mercari

m https://www.publickey1.jp/blog/18/mercari tech conf 2018.html Japanese

= Cookpad
m https://techlife.cookpad.com/entry/2016/03/16/100043 Japanese

® Notes

= No enterprise reveals what kind of services they deploy in concrete (probably top-secret)

® The articles focus mostly on deployment and (organization) management aspects

22

https://www.youtube.com/watch?v=DvLvHnHNT2w
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a
https://www.publickey1.jp/blog/18/mercari_tech_conf_2018.html
https://techlife.cookpad.com/entry/2016/03/16/100043

[Aside] Microservice-ish Architecture in OS Design (1/2)

= Monolithic kernel: a straight-forward design

® Everything runs as a single binary in kernel mode —— . user
Python || libraries |[editor mode
= Adopted both by Linux and Windows () 0 oo
Memory ma-) Device) kernel
nagement Scheduling Drivers Filesystem mode
Kernel
= Pros
= Communication between kernel functionalities are easy and fast (just normal function calls)
® Cons: Low Reliability
= Whole kernel hangs up if a device driver dies
= Whole kernel could be compromised when a device driver is malicious
23

(*) Windows is also based on the monolithic kernel architecture, despite many people’s belief (see Windows Internals, Microsoft Press)

[Aside] Microservice-ish Architecture in OS Design (2/2)

= Microkernel: a more reliable design

= Only “core” functions run inside the kernel bvthon | tibraries | editor || Pe¥ice |[Fitesvstern] “5¢"
)4 Drivers Y mode

= Everything else (e.g., device drivers) run in userland ---------------------------------------o0----
Memory ma- . kernel
nagement Scheduling mode

Kernel (“core” modules only)

= Pros
® OS functionalities can be independently rebooted when crash or compromised
= Cons

= Communication between OS functionalities have larger overhead

= Transitions between user and kernel modes requires using exceptions and are relatively slow

24

5 mins break

25

Reliability in Platform Level

m Platform
= Software systems on which applications rely on Application
= Examples: Middleware, DBMS, operating system VM/ Container || Middleware
0S
Hardware
Building, electricity, ...

= Reliable platform

:|» Software architecture level

- Platform level

— Infrastructure level

J\

L Data center level

= Keeps applications running even when underlying components (e.g., machines) fail

26

Example: Borg

m A reliable platform that runs (almost) everything in Google

" [ncludes both production jobs and internal jobs

" [ncludes both latency- and throughput-sensitive jobs ku be rn etes

Kubernetes (or k8s), an OSS version of Borg
® Achieves high reliability by:
= Utilizing the Paxos algorithm to avoid single point of failures
= Automatically re-executing failed (or intentionally killed) processes

= Spreading processes of the same job to multiple failure domains

® More in later slides about failure domains

27

Single Point of Failure (SPOF, B—[EEF R)

= A component that makes the whole system stop if fails
= j.e., a component on which everything relies either directly or indirectly
= Applicable both to software and hardware levels

= Example: if the UTokyo account authentication system dies, we cannot login to any service
(Zoom, UTAS, LMS, UTokyo Wifi, ..,) even if they are alive

A 5 ek %

20
J, THE UNIVERSITY OF TOKYO

m Getting rid of SPOFs is difficult

= A component that knows and controls everything typically exists

28

Paxos Algorithm (1/2)

= A reliable consensus making algorithm

= Decides a specific value among all participants with guaranteed extent of fault tolerance

= Examples of failures: messages might not arrive, participants might not respond, two “leader”
might suggest different values

® Example: assigning a new ID to a query in a web application

Traditional system (left):

ID server :
- ID server knows IDs already assigned

- ID server gives a new ID based on this information

Currently used IDs: 1, 2, 3
- ID server is a SPOF

get_new_id() 4 System leveraging Paxos:

- Multiple servers make a consensus on the next ID to assign
- Can keep working under failures

29

Paxos Algorithm (2/2)

®m How does Paxos work?

= No time to cover, unfortunately...

= Famous to be moderately complex

= The English Wikipedia article has almost 64
kilo bytes (consists only of plain texts)

= A presentation (*) from a PFI (**) researcher
has 64 pages (longer than this presentation!)

Basic Paxos =0t

This protocol is the most basic of the Paxos family. Each "instance” {or "executicn™) of the basic Paxos protocol decides on & single cutput walue. The protocol proceeds over sevel
divided into parts 5 and b) and phase 2 (which is divided into parts 5 and b). See below the desoription of the phases. Remember that we sssume an ssynchronous model, so 2.g.
in another.

Phase 1 [=dit)

Phase 1a: Prepare |[=dit]
& Proposer oreates 8 message, which we call 8 "Prepare”, identified with a number n. Note that n is not the value to be proposed and maybe agreed on, but just 3 number whi
sent to the acceptors). The number n must be grester than any number used in any of the previous Frepsre messages by this Proposer. Then, it sends the Frepsre message cor
message only contains the number n {that is, it does not have to contain e.g. the proposed value, often dencted by v). The Proposer decides who is in the Quorumi®T A Proy
least 8 Quorum of Acceptors.
Phase 1b: Promise |[=dit]
Any of the Accepfors waits for a Frepare message from any of the Proposers. If an Acceptor receives a Frepare message, the Acceptor must logk at the identifier number n of th

If n is higher than every previcus proposal number received, from any of the Proposers, by the Acceptor, then the Acceptor must return a message, which we call a "Promise]
less than n. If the Acceptor sccepfed a proposal at some point in the past, it must include the previous proposal number, say m, and the comesponding accepted value, say |

Otherwise (that is, n is less than or equal to any previcus propossal number received from any Proposer by the Acceptor) the Acceptor can ignore the received proposal. It dof
the sake of optimization, sending & denisl (Nsck) response would tell the Proposer that it can stop its sttempt to oreste consensus with proposal n.
Phase 2 [zdit)

Phase 2a: Aeccept | =dit]
If & Proposer receives 8 majority of Promises from a8 Quorum of Acceptors, it needs to set & value v to its proposal. If any Acceptors had previously accepted any proposal, then
value of its proposal, v, to the value associated with the highest proposal number reported by the Acceptors, let's call it z. If none of the Acceptors had scoepted 8 proposal up
wanted to propese, say x.[19]

The Proposer sends an Accept message, (i, v}, to 8 Quorum of Acceptors with the chosen value for its proposal, v, and the proposal number n {(which is the same as the numbe|
Acceptors). So, the Accept message is either n, v=z) o1, in case none of the Acceptors previously accepted 8 value, [, v=x).

This Accept message should be interpreted 85 8 “reguest”, 8s in "Accept this proposal, please!”.
Phase 2b: Accepted | =dit]
If an Acceptor receives an Accept message, [, v, from s Proposer, it must scoept it if and only if it has nof already promised {in Phase 1b of the Paxos protocol) to only consid)

If the Acceptor has not slready promised {in Phase 1b) to only consider proposals having an identifier grester than n, it should register the value v [of the just received Acce]
Accepted message to the Proposer and every Learner {which can typically be the Proposers themselves).

Else, it can ignore the Accept message or request.

Mote that an Acceptor can scocept multiple proposals. This can happen when ancther Proposern unaware of the new value being decided, starts 3 new round with & higher identifi
sccept the new proposed value even though it has accepted another cne earlier. These proposals may even have different values in the presence of certain fai lures/ 23T ne202] |
ultimately agree on & single value.

When rounds fail [=dit]
Reounds fail when multiple Fropesers send conflicting Prepsre messages, or when the Froposer does not receive & Quorum of responses (Fromize or Accepted). In these cases, 4

Paxos can be used to select a leader [=sit;

Motice that & Proposer in Pexos could propose ™l am the leader” (or, for example, "Proposer X is the leader}2% | Because of the agreement snd validity guarantees of Paxos, if a(

leader to all other nodes. This satisfies the needs of leader electioni2!] because there is a single node believing it is the leader and a single node known to be the leader at all tim

Graphic representation of the flow of messages in the basic Paxos [=dit]

The following diagrams t several ituations of the application of the Basic Paxos protoool. Some cases show how the Basic Paxos protocol copes with the failure of

MNote that the values returned in the Promize message are “null™ the first time a proposal is made (since no Acceptor has accepted a value before in this round).

Basic Paxos without failures [=dit]

In the diagram below, there is 1 Client, 1 Proposer, 2 Acceptors (i.e. the Quorum size is 3) and 2 Leamners represented by the 2 vertical lines). This diagram represents the case of
fails).

(*) https://www.slideshare.net/pfi/paxos-13615514
(**) Currently known as PFN

https://en.wikipedia.org/wiki/Paxos_(computer_science) 30

https://www.slideshare.net/pfi/paxos-13615514

Borg Architecture

config
ﬂh i — y
command-line
LERED] [touls]]

A cell consists of a bunch of machines
7 - A cell has one “logical” BorgMaster

web browsers 1

cell e — - User submits jobs to BorgMaster
orgMaster
shard . . .
e e - BorgMaster is duplicated to avoid SPOF
scheduler | - (Paxos))
A I - Uses Paxos to elect the main one among

the duplicated ones

£ - Each machine has a Borglet
[Borgiet | |Burglet | IBungIet | IEurglet | - Borglet is controlled by Borg/v\aster
=8 D' -

- BorgMaster recreates processes running in a

machine when a Borglet does not respond

Cited from A. Verma et al., “Large-scale cluster management at
Google with Borg”, EuroSys’15

31

Reliability in Infrastructure Level

®m |nfrastructure

= Fundamental computing resources that applications and platforms rely on

= CPU, storage, network, memory, (operating system)

Application

VM / Container

Middleware

(O8]

Hardware

Building, electricity, ...

m Reliable infrastructure

} Software architecture level

-~ Platform level

~ Infrastructure level

L Data center level

= Keeps platforms and applications running even when components (e.g., HDDs) of the underlying

hardware fail

32

RAID (Redundant Arrays of Inexpensive Disks)

® |mprove reliability of storage systems by combining multiple disks
= Especially, multiple inexpensive disks
= Software engineer’s way of improving storage reliability

m Store multiple data copies on different disks
= Exposed as a single volume from user’ perspective

= Automatically “reconstructed” when one (or a few) of the disks fail

datalabc... datalabc...

copy Data automatically re-copied

m after a new disk is installed

(called “reconstruction™)

-
abc... abc...
— — 33

RAID Types

= RAID 1 (a.k.a. Mirroring)

= Copy an entire disk to a spare one

= Tolerate one disk failure out of two (or N failures out of 2N)

= RAID 5
= Parallel and faster read than RAID1
= Chop data into and store chunks to different disks

= Add parities to tolerate disk failures

= RAID 6

= Add another parity (cf. double parity) to improve reliability
= (a, b, P1, P2) are paired: Tolerate two disk failures

i —

abc..| |labc...

C_J | g
af b ?
c: P2 ‘d:’

(a, b, P1) are paired: Any one of them
can be recovered from the other two
—> Single disk redundancy in this case

34

VAN

® RAID capacity is limited by the smallest disk of the array
m RAID is disk-based by design
= Example: RAID1 with a 1TTB and a 2TB disk = Usable capacity is 1 TB

® ZFS: Building a reliable filesystem atop a storage pool

Left: Traditional filesystems

- Filesystem is created in a volume (e.g., a disk, a

physical partition)

Right: ZFS

- Filesystem is created in a storage pool

- Storage pool consists of multiple disks of different

capacity

Cited from a newbie guide of ZFS: https://www.youtube.com/watch?v=MsY-BafQgj4

It is exposed as a one virtual volume

- It is made reliable by a RAID-like mechanism

35

https://www.youtube.com/watch?v=MsY-BafQgj4

Reliable Networking

m Network failures

= A single machine becomes unreachable (e.g., a network interface of a machine fails)

= A single route becomes unusable (e.g., a network router fails)

_ Every machine under router 2 becomes
N Router 3 unreachable if router 2 fails

TIY

= Common measures against network failures

Router 2 SO Router 1

= Having multiple network interfaces in a machine

= Having multiple routes between any two machines

36

Fat Tree Topology

= Network topology
= Connectivity between network components (servers, routers, switches)
m Goals: fault tolerance, effective bandwidth, efficiency

® Fat tree

= Multiple paths exist between any two components

10.2.0.2 10,2.0,3

https://www.cs.cornell.edu/courses/cs5413/2014fa/lectures/08-fattree.pdf

Core

Aggregation

Edge

37

[Aside] Is the Internet Reliable?

= BGP (Border Gateway Protocol)

= Exchange route info between ASes (Autonomous Systems; internet service providers, cloud providers, etc.)

Please send packets

for 133.11.0.0/16 to me
>
AS 1 < AS 2
OK

= BGP misconfiguration makes (a part of) the Internet go down

BGP leak causing Internet outages in Japan and beyond.

Posted by Andree Toank - August 26, 2017 - 8CP instability - No Comments

= Packets “black-holed” to a wrong AS

] thtle adoption Of authentication mechanisms (Ongoing area) Yesterday some Internet users would have seen issues with their Internet connectivity,

experiencing slowness or parts of the Internet as unreachable. This incident hit users in Japan
particularly hard and it caused the Internal Affairs and Communications Ministry of Japan to start

[} ACt u al O utage d u e to th iS OCC u I'S ti m e tO ti me an investigation into what caused the large-scale internet disruption that slowed or blocked

access to websites and online services for dozens of Japanese companies.

m https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/

38

https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/

Datacenter Level Reliability

® Even infrastructure-level reliability is not enough

® Datacenter level reliability

What if a whole building runs out of power supply?

Application :|» Software architecture level

What if a natural disaster hits a datacenter? .
VM / Container Middleware

- Platform level

oS 3

~— Infrastructure level
Hardware

Building, electricity, ... L Data center level

Base idea: Preparing multiple failure domains

Smaller level: Multiple cluster of machines that rely on independent sets of physical
components (e.g., power supply)

Larger level: Multiple datacenters that are geographically apart from each other

39

AWS Example: Regions and Availability Zones

= Regions (larger level)

= Clusters of datacenters that are physically apart
= Examples: Tokyo, Osaka (from 2021), Beijing, Hongkong, ...
= Even if a big earthquake hits Tokyo, the Osaka one would

keep working

= Availability zones (smaller level, kind of)
= Aregion includes multiple availability zones

= An availability zone consists of multiple datacenters within

100 km (middle-sized level?)

e S2
J

® 080

&\ g

% ®

https://aws.amazon.com/about-aws/global-
infrastructure/regions_az/

40

