
ソフトウェア・クラウド開発プロジェクト実践 I
Practices for Software and Cloud Development Project I

Soramichi Akiyama

穐山空道

akiyama@ci.i.u-tokyo.ac.jp

Last Time in This Class…

2

 We learned why cloud is useful and how it is implemented

 Today’s topic

 Reliability of cloud itself / services running on cloud

Recap:

- Cloud can reduce TCO (Total Cost of Owning) by

managing computing resources on users’ behalf

- Cloud models: SaaS, PaaS, IaaS

- Cloud deployment models: Public clouds, Private cloud

(on-premise, off-premise)

- Cloud internal: Virtualization is key

What is Reliability?

 A reliable system is…

 Available with high confidence

 Easily maintainable

 Availability (可用性)We focus on this today

 An available system is accessible and usable as expected

 Maintainability (a.k.a. Serviceability, 保守性)

 A maintainable system can be fixed when broken

3

Availability Metrics

 Availability does not just mean “up and running”

 What does “running” mean? What if it is up but super slow?

 Metric 1: Based on uptime


Uptime

Uptime + Downtime

 Metric 2: Based on the number of successful queries


The number of successfully handled queries

The number of incoming queries

 More useful than (1) when the system’s states are not binary (“on” or “off”)

 Example scenario: A web app slows down when there are too many users, but still not down

4

Web
Application

RequestsUser

User sent 3 requests,
but only 2 of them succeeded:
Availability == 67 % (2 / 3)

Nines Notation

 Availability is often specified by nines notation

 Example: 99.99 % uptime (“4 nines”) means the system is up for 99.99% of the time

 Adding one nine requires to reduce downtime to 1/10

 99.99 % uptime == 0.001 % downtime

 99.999 % uptime == 0.0001 % downtime

5

Nines Two Three Four Five Six Seven

% 99 99.9 99.99 99.999 99.9999 99.99999

Downtime
in 1 year

4 days 9 hours 1 hour 5 mins 30 seconds 3 seconds

1/10

Service Level Objectives (SLO)

 Objectives of reliability metrics

 Defined internally to monitor the system’s health

 Example 1: Query success rate >= 99%

 Example 2: 99 percentile of query latency < 100 ms

 SLOs guide development / maintenance decisions

 Without SLOs: “The system looks somewhat slow these days… but should we do something?”

 With SLOs: “99 percentile latency is reaching almost 100 ms. We should investigate the
bottleneck and resolve it immediately.”

6

La
te

nc
y

Query ids sorted by latency

50 percentile
99 percentile

1 50 99

Service Level Agreements (SLA)

 Agreements of reliability metrics

 Contracted between users and service providers

 SLA violations often come with penalties

 Example: Guarantee 99 % uptime, and reimburse the money if violated

 SLA != SLO

 SLO is internal, while SLA is external

 A system may have no SLA even if it has SLOs (e.g., You have no SLA on using a search engine,
while they still have internal SLOs)

 Defining an SLA involves in business decisions as well as technical ones

7
R

ei
m

b
u

rs
e

https://www.oxfordlearnersdictionaries.com/definition/english/reimburse

Example of Real SLA (Amazon EC2)

8
https://aws.amazon.com/compute/sla/

4 nines uptime agreement

Reimbursement policy

Defining Good SLAs

 Well-defined SLAs are not perfect

 Nine notations are averages

 Taking averages blurs what is happening

 Failures that are the same in nine notations but different in reality

1. Server outage in Black Friday vs. in a normal day

2. Complete outage vs. graceful degradation (system kind of working but out of SLA)

3. A second of separate downtime everyday vs. 30 seconds of continuous downtime once in a month

9(*) Failures 1 and 2 are taken from:
Jeffrey C. Mogul and John Wilkes, “Nines are Not Enough: Meaning Metrics for Clouds”, HotOS’20

https://en.wikipedia.org/wiki/Black_Friday_(shopping)

[Aside] Error-Budget

 The difference between an SLO and the actual metric value

 Example: SLO of 99 percentile latency is 100 ms, while it is currently 60 ms

→ This system has 40 ms error-budget (or slack)

 Error-budget is useful as a common language of developers and operators

 Developers: adding new features first, reliability second

 Operators: the other way around

 Quantitative error-budget can help balancing the two (e.g., 40 ms error-budget means that a new
feature can probably be added without much concerning the latency)

10
*More on error-budget: Site Reliability Engineering, O’REILLY

Improving Reliability (1/2)

 Traditional way

 Improve the reliability of underlying components to make the whole system reliable

 Example: Use highly reliable capacitors (コンデンサ) inside an enterprise-class power supply

 It is the only way in many non-software systems

 Physical components cannot be replaced or switched easily once deployed

11

https://www.corsair.com/ja/ja/%E3%82%AB%E3%83%86%E3%82%B4%E3%83%AA%E3%83%BC/%E8%A3%BD%E5%93
%81/%E9%9B%BB%E6%BA%90%E3%83%A6%E3%83%8B%E3%83%83%E3%83%88/axi-series-config/p/CP-9020087-JP

Improving Reliability (2/2)

 Software engineers’ way (modern? way)

 “Embrace” failures by preparing for them

 Example: Run two instances of your web application and switch between them when one of them
fails, instead of running it on a super reliable server (i.e., fail over)

12

Embrace

https://www.oxfordlearnersdictionaries.com/definition/english/embrace_1

App App

Active Stand-by

App

Active

Why Software Engineers’ Way is Preferrable?

 So many components exist in cloud datacenters

 Fugaku (富岳) supercomputer has more than 7,500,000 cores! (*)

 Note: cloud datacenters do not reveal how many components they have, so we use Fugaku as an
alternative example

 Things certainly break in such large scale

 Even a very small failure rate does matter in large scale

 Toy Example: Suppose 1% of HDDs fail in a year

 Then 1,000 HDDs fail in a year if a cloud data center contains 100,000 of them!

13
(*) https://www.top500.org/lists/top500/list/2020/11/

https://www.fujitsu.com/jp/about/businesspolicy/tech/fugaku/

Real Numbers of HDD Failures

 Backblaze (a cloud storage provider) observed
1,302 failing HDDs in 2020

 Out of 162,299 of them (0.93 %)

 Detailed observations and test conditions can be
found at: https://www.backblaze.com/blog/backblaze-
hard-drive-stats-for-2020/

14

https://www.backblaze.com/blog/backblaze-hard-drive-stats-for-2020/

Reliability in Layers

 Reliability-improving measures are taken in different layers

 Each measure embraces failures in the underlying layer(s)

15

VM / Container

OS

Hardware

Middleware

Application Software architecture level

Platform level

Infrastructure level

Data center levelBuilding, electricity, …

- We will walk through the layers

to see how they embrace failures

- Note: Bodies of work exist for

each layer, but we can only skim

representative techniques due to

time constraints

Reliability in Software Architecture Level

 Software architecture

 Principles and best practices on how to structure complex software

 Purposes: Easy maintainability, easy understandability, …

 Examples: Object-oriented, MVC, …

 Refer to Aoki-sensei’s lecture about MVC

 Reliable software architecture

 A software architecture that aims to be highly reliable

 Prominent example: microservice architecture

16

Microservice Architecture: Overview

 Constructing a (web) application as a swarm of micro services

 Each service implements a single functionality

 Each service runs in a separate process / container

 Communications among services through loosely coupling mechanisms

 HTTP + REST APIs, gRPC, …

17

Service 2

Service 3

Service 1

Service 4

Service 5
In

Out

Application

Straight-forward Implementation of MVC Architecture

 One “monolithic” process for each component

 Runs in a single process, although modularized as functions and classes (of course)

 Functionalities invoke each other using normal function calls

18

Monolith
（一枚岩）

Model Controller

View
def check_existing_user(name):
….

def check_duplicate_email(email):
….

def register_new_user(name, email, password):
….
if check_existing_user(name):
….

if check_duplicate_email(email):
….

function calls

Controller.py

Microservice Implementation of MVC Architecture

 Each module is divided into micro services

 Each module (service) runs in a separate process

 Modules communicate with REST / http or alike even between the ones inside the same
component (e.g., controller)

19

Controller

register_new_user

check_existing_user

register_duplicate_email

...REST

REST

REST

REST
...

Microservices Offer Higher Reliability (1/2)

 Each service can be independently scaled

 Ex: Service 1 relies on Service 2 and the latter has turned out to be more compute-intensive

 Increase # of containers for Service 2 while that of Service 1 can remain the same

 This is trivial because…

 Each service is already a separate process or a container

 Services communicate with REST APIs and only loosely coupled

20

Service 1 Service 2 Service 1 Service 2

Service 2

Service 2
Scale-out Service 2

Microservices Offer Higher Reliability (2/2)

 Each service can be independently rebooted

 Ex: Service 1 relies on Service 2 and the container running Service 2 fails somehow

 Reboot only Service 2 while other parts are continuously working

 This is also trivial because…

 Rebooting Service 2 is just a lunch of a new process or a container

 Other parts (e.g., Service 1 → Service 3 → Service 5) are independent from Service 2 by design 21

Service 2

Service 3

Service 1

Service 4

Service 5
In

Out
Reboot

Adoptions of Microservice Architecture

 Netflix

 https://www.youtube.com/watch?v=DvLvHnHNT2w English

 Uber

 https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a English

 Mercari

 https://www.publickey1.jp/blog/18/mercari_tech_conf_2018.html Japanese

 Cookpad

 https://techlife.cookpad.com/entry/2016/03/16/100043 Japanese

 Notes

 No enterprise reveals what kind of services they deploy in concrete (probably top-secret)

 The articles focus mostly on deployment and (organization) management aspects

22

https://www.youtube.com/watch?v=DvLvHnHNT2w
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a
https://www.publickey1.jp/blog/18/mercari_tech_conf_2018.html
https://techlife.cookpad.com/entry/2016/03/16/100043

[Aside] Microservice-ish Architecture in OS Design (1/2)

 Monolithic kernel: a straight-forward design
 Everything runs as a single binary in kernel mode

 Adopted both by Linux and Windows (*)

 Pros
 Communication between kernel functionalities are easy and fast (just normal function calls)

 Cons: Low Reliability
 Whole kernel hangs up if a device driver dies

 Whole kernel could be compromised when a device driver is malicious

23

Memory ma-
nagement Scheduling

Device
Drivers

Kernel

…

kernel
mode

user
mode

(*) Windows is also based on the monolithic kernel architecture, despite many people’s belief (see Windows Internals, Microsoft Press)

Filesystem

Python libraries editor

[Aside] Microservice-ish Architecture in OS Design (2/2)

 Microkernel: a more reliable design

 Only “core” functions run inside the kernel

 Everything else (e.g., device drivers) run in userland

 Pros

 OS functionalities can be independently rebooted when crash or compromised

 Cons

 Communication between OS functionalities have larger overhead

 Transitions between user and kernel modes requires using exceptions and are relatively slow

24

Memory ma-
nagement Scheduling

Kernel (“core” modules only)

Python libraries editor

kernel
mode

user
mode

Device
Drivers Filesystem

25

5 mins break

Reliability in Platform Level

 Platform

 Software systems on which applications rely on

 Examples: Middleware, DBMS, operating system

 Reliable platform

 Keeps applications running even when underlying components (e.g., machines) fail

26

Example: Borg

 A reliable platform that runs (almost) everything in Google

 Includes both production jobs and internal jobs

 Includes both latency- and throughput-sensitive jobs

 Achieves high reliability by:

 Utilizing the Paxos algorithm to avoid single point of failures

 Automatically re-executing failed (or intentionally killed) processes

 Spreading processes of the same job to multiple failure domains

 More in later slides about failure domains

27

Kubernetes (or k8s), an OSS version of Borg

Single Point of Failure (SPOF, 単一障害点)

 A component that makes the whole system stop if fails

 i.e., a component on which everything relies either directly or indirectly

 Applicable both to software and hardware levels

 Example: if the UTokyo account authentication system dies, we cannot login to any service
(Zoom, UTAS, LMS, UTokyo Wifi, ..,) even if they are alive

 Getting rid of SPOFs is difficult

 A component that knows and controls everything typically exists
28

Paxos Algorithm (1/2)

 A reliable consensus making algorithm

 Decides a specific value among all participants with guaranteed extent of fault tolerance

 Examples of failures: messages might not arrive, participants might not respond, two “leader”
might suggest different values

 Example: assigning a new ID to a query in a web application

29

ID server

Currently used IDs: 1, 2, 3

get_new_id() 4

Traditional system (left):
- ID server knows IDs already assigned
- ID server gives a new ID based on this information
- ID server is a SPOF

System leveraging Paxos:
- Multiple servers make a consensus on the next ID to assign
- Can keep working under failures

Paxos Algorithm (2/2)

 How does Paxos work?

 No time to cover, unfortunately…

 Famous to be moderately complex

 The English Wikipedia article has almost 64
kilo bytes (consists only of plain texts)

 A presentation (*) from a PFI (**) researcher
has 64 pages (longer than this presentation!)

30https://en.wikipedia.org/wiki/Paxos_(computer_science)(*) https://www.slideshare.net/pfi/paxos-13615514
(**) Currently known as PFN

https://www.slideshare.net/pfi/paxos-13615514

Borg Architecture

31
Cited from A. Verma et al., “Large-scale cluster management at
Google with Borg”, EuroSys’15

- A cell consists of a bunch of machines
- A cell has one “logical” BorgMaster
- User submits jobs to BorgMaster

- BorgMaster is duplicated to avoid SPOF
- Uses Paxos to elect the main one among

the duplicated ones
- Each machine has a Borglet

- Borglet is controlled by BorgMaster
- BorgMaster recreates processes running in a

machine when a Borglet does not respond

Reliability in Infrastructure Level

 Infrastructure

 Fundamental computing resources that applications and platforms rely on

 CPU, storage, network, memory, (operating system)

 Reliable infrastructure

 Keeps platforms and applications running even when components (e.g., HDDs) of the underlying
hardware fail

32

RAID (Redundant Arrays of Inexpensive Disks)

 Improve reliability of storage systems by combining multiple disks

 Especially, multiple inexpensive disks

 Software engineer’s way of improving storage reliability

 Store multiple data copies on different disks

 Exposed as a single volume from user’ perspective

 Automatically “reconstructed” when one (or a few) of the disks fail

33

data a b c …

a b c … a b c …

copy

data a b c …

a b c … a b c …

Data automatically re-copied
after a new disk is installed
(called “reconstruction”)

Disk failure

RAID Types

 RAID 1 (a.k.a. Mirroring)

 Copy an entire disk to a spare one

 Tolerate one disk failure out of two (or N failures out of 2N)

 RAID 5

 Parallel and faster read than RAID1

 Chop data into and store chunks to different disks

 Add parities to tolerate disk failures

 RAID 6

 Add another parity (cf. double parity) to improve reliability

 (a, b, P1, P2) are paired: Tolerate two disk failures

34

a b c … a b c …

a b

d

P1

P2c

(a, b, P1) are paired: Any one of them
can be recovered from the other two
→ Single disk redundancy in this case

ZFS

 RAID capacity is limited by the smallest disk of the array

 RAID is disk-based by design

 Example: RAID1 with a 1TB and a 2TB disk → Usable capacity is 1 TB

 ZFS: Building a reliable filesystem atop a storage pool

35
Cited from a newbie guide of ZFS: https://www.youtube.com/watch?v=MsY-BafQgj4

Left: Traditional filesystems
- Filesystem is created in a volume (e.g., a disk, a

physical partition)

Right: ZFS
- Filesystem is created in a storage pool
- Storage pool consists of multiple disks of different

capacity
- It is exposed as a one virtual volume
- It is made reliable by a RAID-like mechanism

https://www.youtube.com/watch?v=MsY-BafQgj4

Reliable Networking

 Network failures

 A single machine becomes unreachable (e.g., a network interface of a machine fails)

 A single route becomes unusable (e.g., a network router fails)

 Common measures against network failures

 Having multiple network interfaces in a machine

 Having multiple routes between any two machines

36

Router 1Router 2 Router 3
Every machine under router 2 becomes
unreachable if router 2 fails

Fat Tree Topology

 Network topology

 Connectivity between network components (servers, routers, switches)

 Goals: fault tolerance, effective bandwidth, efficiency

 Fat tree

 Multiple paths exist between any two components

 Achieved by having multiple switches to aggregate lower layers

37
https://www.cs.cornell.edu/courses/cs5413/2014fa/lectures/08-fattree.pdf

[Aside] Is the Internet Reliable?

 BGP (Border Gateway Protocol)

 Exchange route info between ASes (Autonomous Systems; internet service providers, cloud providers, etc.)

 BGP misconfiguration makes (a part of) the Internet go down

 Packets “black-holed” to a wrong AS

 Little adoption of authentication mechanisms (ongoing area)

 Actual outage due to this occurs time to time

 https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/

38

AS 1 AS 2

Please send packets
for 133.11.0.0/16 to me

OK

https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/

Datacenter Level Reliability

 Even infrastructure-level reliability is not enough

 What if a whole building runs out of power supply?

 What if a natural disaster hits a datacenter?

 Datacenter level reliability

 Base idea: Preparing multiple failure domains

 Smaller level: Multiple cluster of machines that rely on independent sets of physical
components (e.g., power supply)

 Larger level: Multiple datacenters that are geographically apart from each other

39

AWS Example: Regions and Availability Zones

 Regions (larger level)

 Clusters of datacenters that are physically apart

 Examples: Tokyo, Osaka (from 2021), Beijing, Hongkong, …

 Even if a big earthquake hits Tokyo, the Osaka one would
keep working

 Availability zones (smaller level, kind of)

 A region includes multiple availability zones

 An availability zone consists of multiple datacenters within
100 km (middle-sized level?)

40

https://aws.amazon.com/about-aws/global-
infrastructure/regions_az/

