
ソフトウェア・クラウド開発プロジェクト実践 I
Practices for Software and Cloud Development Project I

Soramichi Akiyama

穐山空道

akiyama@ci.i.u-tokyo.ac.jp

Last Time in This Class…

2

 We learned why cloud is useful and how it is implemented

 Today’s topic

 Reliability of cloud itself / services running on cloud

Recap:

- Cloud can reduce TCO (Total Cost of Owning) by

managing computing resources on users’ behalf

- Cloud models: SaaS, PaaS, IaaS

- Cloud deployment models: Public clouds, Private cloud

(on-premise, off-premise)

- Cloud internal: Virtualization is key

What is Reliability?

 A reliable system is…

 Available with high confidence

 Easily maintainable

 Availability (可用性)We focus on this today

 An available system is accessible and usable as expected

 Maintainability (a.k.a. Serviceability, 保守性)

 A maintainable system can be fixed when broken

3

Availability Metrics

 Availability does not just mean “up and running”

 What does “running” mean? What if it is up but super slow?

 Metric 1: Based on uptime

Uptime

Uptime + Downtime

 Metric 2: Based on the number of successful queries

The number of successfully handled queries

The number of incoming queries

 More useful than (1) when the system’s states are not binary (“on” or “off”)

 Example scenario: A web app slows down when there are too many users, but still not down

4

Web
Application

RequestsUser

User sent 3 requests,
but only 2 of them succeeded:
Availability == 67 % (2 / 3)

Nines Notation

 Availability is often specified by nines notation

 Example: 99.99 % uptime (“4 nines”) means the system is up for 99.99% of the time

 Adding one nine requires to reduce downtime to 1/10

 99.99 % uptime == 0.001 % downtime

 99.999 % uptime == 0.0001 % downtime

5

Nines Two Three Four Five Six Seven

% 99 99.9 99.99 99.999 99.9999 99.99999

Downtime
in 1 year

4 days 9 hours 1 hour 5 mins 30 seconds 3 seconds

1/10

Service Level Objectives (SLO)

 Objectives of reliability metrics

 Defined internally to monitor the system’s health

 Example 1: Query success rate >= 99%

 Example 2: 99 percentile of query latency < 100 ms

 SLOs guide development / maintenance decisions

 Without SLOs: “The system looks somewhat slow these days… but should we do something?”

 With SLOs: “99 percentile latency is reaching almost 100 ms. We should investigate the
bottleneck and resolve it immediately.”

6

La
te

nc
y

Query ids sorted by latency

50 percentile
99 percentile

1 50 99

Service Level Agreements (SLA)

 Agreements of reliability metrics

 Contracted between users and service providers

 SLA violations often come with penalties

 Example: Guarantee 99 % uptime, and reimburse the money if violated

 SLA != SLO

 SLO is internal, while SLA is external

 A system may have no SLA even if it has SLOs (e.g., You have no SLA on using a search engine,
while they still have internal SLOs)

 Defining an SLA involves in business decisions as well as technical ones

7
R

ei
m

b
u

rs
e

https://www.oxfordlearnersdictionaries.com/definition/english/reimburse

Example of Real SLA (Amazon EC2)

8
https://aws.amazon.com/compute/sla/

4 nines uptime agreement

Reimbursement policy

Defining Good SLAs

 Well-defined SLAs are not perfect

 Nine notations are averages

 Taking averages blurs what is happening

 Failures that are the same in nine notations but different in reality

1. Server outage in Black Friday vs. in a normal day

2. Complete outage vs. graceful degradation (system kind of working but out of SLA)

3. A second of separate downtime everyday vs. 30 seconds of continuous downtime once in a month

9(*) Failures 1 and 2 are taken from:
Jeffrey C. Mogul and John Wilkes, “Nines are Not Enough: Meaning Metrics for Clouds”, HotOS’20

https://en.wikipedia.org/wiki/Black_Friday_(shopping)

[Aside] Error-Budget

 The difference between an SLO and the actual metric value

 Example: SLO of 99 percentile latency is 100 ms, while it is currently 60 ms

→ This system has 40 ms error-budget (or slack)

 Error-budget is useful as a common language of developers and operators

 Developers: adding new features first, reliability second

 Operators: the other way around

 Quantitative error-budget can help balancing the two (e.g., 40 ms error-budget means that a new
feature can probably be added without much concerning the latency)

10
*More on error-budget: Site Reliability Engineering, O’REILLY

Improving Reliability (1/2)

 Traditional way

 Improve the reliability of underlying components to make the whole system reliable

 Example: Use highly reliable capacitors (コンデンサ) inside an enterprise-class power supply

 It is the only way in many non-software systems

 Physical components cannot be replaced or switched easily once deployed

11

https://www.corsair.com/ja/ja/%E3%82%AB%E3%83%86%E3%82%B4%E3%83%AA%E3%83%BC/%E8%A3%BD%E5%93
%81/%E9%9B%BB%E6%BA%90%E3%83%A6%E3%83%8B%E3%83%83%E3%83%88/axi-series-config/p/CP-9020087-JP

Improving Reliability (2/2)

 Software engineers’ way (modern? way)

 “Embrace” failures by preparing for them

 Example: Run two instances of your web application and switch between them when one of them
fails, instead of running it on a super reliable server (i.e., fail over)

12

Embrace

https://www.oxfordlearnersdictionaries.com/definition/english/embrace_1

App App

Active Stand-by

App

Active

Why Software Engineers’ Way is Preferrable?

 So many components exist in cloud datacenters

 Fugaku (富岳) supercomputer has more than 7,500,000 cores! (*)

 Note: cloud datacenters do not reveal how many components they have, so we use Fugaku as an
alternative example

 Things certainly break in such large scale

 Even a very small failure rate does matter in large scale

 Toy Example: Suppose 1% of HDDs fail in a year

 Then 1,000 HDDs fail in a year if a cloud data center contains 100,000 of them!

13
(*) https://www.top500.org/lists/top500/list/2020/11/

https://www.fujitsu.com/jp/about/businesspolicy/tech/fugaku/

Real Numbers of HDD Failures

 Backblaze (a cloud storage provider) observed
1,302 failing HDDs in 2020

 Out of 162,299 of them (0.93 %)

 Detailed observations and test conditions can be
found at: https://www.backblaze.com/blog/backblaze-
hard-drive-stats-for-2020/

14

https://www.backblaze.com/blog/backblaze-hard-drive-stats-for-2020/

Reliability in Layers

 Reliability-improving measures are taken in different layers

 Each measure embraces failures in the underlying layer(s)

15

VM / Container

OS

Hardware

Middleware

Application Software architecture level

Platform level

Infrastructure level

Data center levelBuilding, electricity, …

- We will walk through the layers

to see how they embrace failures

- Note: Bodies of work exist for

each layer, but we can only skim

representative techniques due to

time constraints

Reliability in Software Architecture Level

 Software architecture

 Principles and best practices on how to structure complex software

 Purposes: Easy maintainability, easy understandability, …

 Examples: Object-oriented, MVC, …

 Refer to Aoki-sensei’s lecture about MVC

 Reliable software architecture

 A software architecture that aims to be highly reliable

 Prominent example: microservice architecture

16

Microservice Architecture: Overview

 Constructing a (web) application as a swarm of micro services

 Each service implements a single functionality

 Each service runs in a separate process / container

 Communications among services through loosely coupling mechanisms

 HTTP + REST APIs, gRPC, …

17

Service 2

Service 3

Service 1

Service 4

Service 5
In

Out

Application

Straight-forward Implementation of MVC Architecture

 One “monolithic” process for each component

 Runs in a single process, although modularized as functions and classes (of course)

 Functionalities invoke each other using normal function calls

18

Monolith
（一枚岩）

Model Controller

View
def check_existing_user(name):
….

def check_duplicate_email(email):
….

def register_new_user(name, email, password):
….
if check_existing_user(name):
….

if check_duplicate_email(email):
….

function calls

Controller.py

Microservice Implementation of MVC Architecture

 Each module is divided into micro services

 Each module (service) runs in a separate process

 Modules communicate with REST / http or alike even between the ones inside the same
component (e.g., controller)

19

Controller

register_new_user

check_existing_user

register_duplicate_email

...REST

REST

REST

REST
...

Microservices Offer Higher Reliability (1/2)

 Each service can be independently scaled

 Ex: Service 1 relies on Service 2 and the latter has turned out to be more compute-intensive

 Increase # of containers for Service 2 while that of Service 1 can remain the same

 This is trivial because…

 Each service is already a separate process or a container

 Services communicate with REST APIs and only loosely coupled

20

Service 1 Service 2 Service 1 Service 2

Service 2

Service 2
Scale-out Service 2

Microservices Offer Higher Reliability (2/2)

 Each service can be independently rebooted

 Ex: Service 1 relies on Service 2 and the container running Service 2 fails somehow

 Reboot only Service 2 while other parts are continuously working

 This is also trivial because…

 Rebooting Service 2 is just a lunch of a new process or a container

 Other parts (e.g., Service 1 → Service 3 → Service 5) are independent from Service 2 by design 21

Service 2

Service 3

Service 1

Service 4

Service 5
In

Out
Reboot

Adoptions of Microservice Architecture

 Netflix

 https://www.youtube.com/watch?v=DvLvHnHNT2w English

 Uber

 https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a English

 Mercari

 https://www.publickey1.jp/blog/18/mercari_tech_conf_2018.html Japanese

 Cookpad

 https://techlife.cookpad.com/entry/2016/03/16/100043 Japanese

 Notes

 No enterprise reveals what kind of services they deploy in concrete (probably top-secret)

 The articles focus mostly on deployment and (organization) management aspects

22

https://www.youtube.com/watch?v=DvLvHnHNT2w
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a
https://www.publickey1.jp/blog/18/mercari_tech_conf_2018.html
https://techlife.cookpad.com/entry/2016/03/16/100043

[Aside] Microservice-ish Architecture in OS Design (1/2)

 Monolithic kernel: a straight-forward design
 Everything runs as a single binary in kernel mode

 Adopted both by Linux and Windows (*)

 Pros
 Communication between kernel functionalities are easy and fast (just normal function calls)

 Cons: Low Reliability
 Whole kernel hangs up if a device driver dies

 Whole kernel could be compromised when a device driver is malicious

23

Memory ma-
nagement Scheduling

Device
Drivers

Kernel

…

kernel
mode

user
mode

(*) Windows is also based on the monolithic kernel architecture, despite many people’s belief (see Windows Internals, Microsoft Press)

Filesystem

Python libraries editor

[Aside] Microservice-ish Architecture in OS Design (2/2)

 Microkernel: a more reliable design

 Only “core” functions run inside the kernel

 Everything else (e.g., device drivers) run in userland

 Pros

 OS functionalities can be independently rebooted when crash or compromised

 Cons

 Communication between OS functionalities have larger overhead

 Transitions between user and kernel modes requires using exceptions and are relatively slow

24

Memory ma-
nagement Scheduling

Kernel (“core” modules only)

Python libraries editor

kernel
mode

user
mode

Device
Drivers Filesystem

25

5 mins break

Reliability in Platform Level

 Platform

 Software systems on which applications rely on

 Examples: Middleware, DBMS, operating system

 Reliable platform

 Keeps applications running even when underlying components (e.g., machines) fail

26

Example: Borg

 A reliable platform that runs (almost) everything in Google

 Includes both production jobs and internal jobs

 Includes both latency- and throughput-sensitive jobs

 Achieves high reliability by:

 Utilizing the Paxos algorithm to avoid single point of failures

 Automatically re-executing failed (or intentionally killed) processes

 Spreading processes of the same job to multiple failure domains

 More in later slides about failure domains

27

Kubernetes (or k8s), an OSS version of Borg

Single Point of Failure (SPOF, 単一障害点)

 A component that makes the whole system stop if fails

 i.e., a component on which everything relies either directly or indirectly

 Applicable both to software and hardware levels

 Example: if the UTokyo account authentication system dies, we cannot login to any service
(Zoom, UTAS, LMS, UTokyo Wifi, ..,) even if they are alive

 Getting rid of SPOFs is difficult

 A component that knows and controls everything typically exists
28

Paxos Algorithm (1/2)

 A reliable consensus making algorithm

 Decides a specific value among all participants with guaranteed extent of fault tolerance

 Examples of failures: messages might not arrive, participants might not respond, two “leader”
might suggest different values

 Example: assigning a new ID to a query in a web application

29

ID server

Currently used IDs: 1, 2, 3

get_new_id() 4

Traditional system (left):
- ID server knows IDs already assigned
- ID server gives a new ID based on this information
- ID server is a SPOF

System leveraging Paxos:
- Multiple servers make a consensus on the next ID to assign
- Can keep working under failures

Paxos Algorithm (2/2)

 How does Paxos work?

 No time to cover, unfortunately…

 Famous to be moderately complex

 The English Wikipedia article has almost 64
kilo bytes (consists only of plain texts)

 A presentation (*) from a PFI (**) researcher
has 64 pages (longer than this presentation!)

30https://en.wikipedia.org/wiki/Paxos_(computer_science)(*) https://www.slideshare.net/pfi/paxos-13615514
(**) Currently known as PFN

https://www.slideshare.net/pfi/paxos-13615514

Borg Architecture

31
Cited from A. Verma et al., “Large-scale cluster management at
Google with Borg”, EuroSys’15

- A cell consists of a bunch of machines
- A cell has one “logical” BorgMaster
- User submits jobs to BorgMaster

- BorgMaster is duplicated to avoid SPOF
- Uses Paxos to elect the main one among

the duplicated ones
- Each machine has a Borglet

- Borglet is controlled by BorgMaster
- BorgMaster recreates processes running in a

machine when a Borglet does not respond

Reliability in Infrastructure Level

 Infrastructure

 Fundamental computing resources that applications and platforms rely on

 CPU, storage, network, memory, (operating system)

 Reliable infrastructure

 Keeps platforms and applications running even when components (e.g., HDDs) of the underlying
hardware fail

32

RAID (Redundant Arrays of Inexpensive Disks)

 Improve reliability of storage systems by combining multiple disks

 Especially, multiple inexpensive disks

 Software engineer’s way of improving storage reliability

 Store multiple data copies on different disks

 Exposed as a single volume from user’ perspective

 Automatically “reconstructed” when one (or a few) of the disks fail

33

data a b c …

a b c … a b c …

copy

data a b c …

a b c … a b c …

Data automatically re-copied
after a new disk is installed
(called “reconstruction”)

Disk failure

RAID Types

 RAID 1 (a.k.a. Mirroring)

 Copy an entire disk to a spare one

 Tolerate one disk failure out of two (or N failures out of 2N)

 RAID 5

 Parallel and faster read than RAID1

 Chop data into and store chunks to different disks

 Add parities to tolerate disk failures

 RAID 6

 Add another parity (cf. double parity) to improve reliability

 (a, b, P1, P2) are paired: Tolerate two disk failures

34

a b c … a b c …

a b

d

P1

P2c

(a, b, P1) are paired: Any one of them
can be recovered from the other two
→ Single disk redundancy in this case

ZFS

 RAID capacity is limited by the smallest disk of the array

 RAID is disk-based by design

 Example: RAID1 with a 1TB and a 2TB disk → Usable capacity is 1 TB

 ZFS: Building a reliable filesystem atop a storage pool

35
Cited from a newbie guide of ZFS: https://www.youtube.com/watch?v=MsY-BafQgj4

Left: Traditional filesystems
- Filesystem is created in a volume (e.g., a disk, a

physical partition)

Right: ZFS
- Filesystem is created in a storage pool
- Storage pool consists of multiple disks of different

capacity
- It is exposed as a one virtual volume
- It is made reliable by a RAID-like mechanism

https://www.youtube.com/watch?v=MsY-BafQgj4

Reliable Networking

 Network failures

 A single machine becomes unreachable (e.g., a network interface of a machine fails)

 A single route becomes unusable (e.g., a network router fails)

 Common measures against network failures

 Having multiple network interfaces in a machine

 Having multiple routes between any two machines

36

Router 1Router 2 Router 3
Every machine under router 2 becomes
unreachable if router 2 fails

Fat Tree Topology

 Network topology

 Connectivity between network components (servers, routers, switches)

 Goals: fault tolerance, effective bandwidth, efficiency

 Fat tree

 Multiple paths exist between any two components

 Achieved by having multiple switches to aggregate lower layers

37
https://www.cs.cornell.edu/courses/cs5413/2014fa/lectures/08-fattree.pdf

[Aside] Is the Internet Reliable?

 BGP (Border Gateway Protocol)

 Exchange route info between ASes (Autonomous Systems; internet service providers, cloud providers, etc.)

 BGP misconfiguration makes (a part of) the Internet go down

 Packets “black-holed” to a wrong AS

 Little adoption of authentication mechanisms (ongoing area)

 Actual outage due to this occurs time to time

 https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/

38

AS 1 AS 2

Please send packets
for 133.11.0.0/16 to me

OK

https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/

Datacenter Level Reliability

 Even infrastructure-level reliability is not enough

 What if a whole building runs out of power supply?

 What if a natural disaster hits a datacenter?

 Datacenter level reliability

 Base idea: Preparing multiple failure domains

 Smaller level: Multiple cluster of machines that rely on independent sets of physical
components (e.g., power supply)

 Larger level: Multiple datacenters that are geographically apart from each other

39

AWS Example: Regions and Availability Zones

 Regions (larger level)

 Clusters of datacenters that are physically apart

 Examples: Tokyo, Osaka (from 2021), Beijing, Hongkong, …

 Even if a big earthquake hits Tokyo, the Osaka one would
keep working

 Availability zones (smaller level, kind of)

 A region includes multiple availability zones

 An availability zone consists of multiple datacenters within
100 km (middle-sized level?)

40

https://aws.amazon.com/about-aws/global-
infrastructure/regions_az/

