
ソフトウェア・クラウド開発プロジェクト実践 I
Practices for Software and Cloud Development Project I

Soramichi Akiyama

穐山空道

akiyama@ci.i.u-tokyo.ac.jp

Why “Study” Cloud Computing?

2

 You need knowledge of cloud computing to …

 Properly assess if you should use clouds or not

 Properly select which type of clouds you should use

 Properly develop / debug your software on top of clouds

 Why: Almost any software development requires using clouds

 Examples: web applications, business process applications (e.g., finance), games, web
browsers, communication applications, …

Today’s Topics

 Cloud computing overview
 What is it?

 Why is it useful?

 How can it be categorized and how are they different?

---- 5 min break ----

 Cloud computing internals
 How are they implemented?

 Keywords: virtual machines, OS-level virtualization (containers), network virtualization
3

What is “Cloud” Computing? (Very Brief Overview)

 A relatively new computing paradigm, where
 A user can borrow/rent virtually infinite computing recourse from somewhere behind the “cloud”

 The provided resource is accessible through network

 The user is not bothered to manage the resource they use

 The user is charged depending only on the amount of resource they use (“pay-per-use”)

4“cloud”

Let me use 32 machines with
4 GPUs each for 12 hours

Here they are. We charge you
32 * 4 * 12 * 0.02 = $ 30.72

 Cloud computing is widely used nowadays

 Examples:
 Amazon: everything hosted on Amazon Web Services (of course!!)

 TOYOTA: webpage distributed through Akamai

 Mercari: item images hosted by SAKURA Internet

 UTokyo: the livestream of the graduation ceremony in FY2020 was hosted on a cloud (Note: not
the YouTube version, but the self-managed one)

 Quiz: Why did UTokyo use a cloud?
 Hopefully you’ll be able to answer it with confidence after the class

Cloud Computing is Everywhere

5

Why is Cloud Important/Useful? (1/4)

 A short time ago in an apartment so, so close…. (inspired by [1])

 My website was ACTUALLY hosted in-house on a small Linux machine

 We will walk through importance of cloud computing by elaborating why the
design of my website back then was not practically good

6[1] https://en.wikipedia.org/wiki/Star_Wars_opening_crawl
[2] https://ja.wikipedia.org/wiki/%E5%AE%89%E7%94%B0%E8%AC%9B%E5%A0%82

Photo cited from [2]

100 m?

My apartment
back then

Linux machine

Why is Cloud Important/Useful? (2/4)

 What if the linux machine breaks?

 Hardware (e.g., HDD, power supply) may fail over time

 The input voltage may surge due to a crash of thunder

 I may accidentally kick it

 Computer virus on my other machines may attack it

 Then, I must buy a new one and re-configure it…

 It costs money and human-labor

 Cloud manages computing resource on my behalf

 Total cost of owning (TCO) can be largely reduced (Note: “cost” includes human labor as well)

 Especially true for a large deployment such as big cooperate web services

7

Why is Cloud Important/Useful? (3/4)

 What if it gets 1,000X more accesses all the sudden?

 My paper might get accepted by Nature

 My name might be broadcasted on NHK for something bad

 My poor machine cannot handle them

 Visitors become upset and will never come back

 X % of visitors become upset after Y seconds [No reliable source of concrete numbers found]

 Cloud can elastically provide more or less resource as you wish

 Can handle both sudden access spikes and gradual up-scaling

 Scaling down is also easy (e.g., after the # of users decrease)

 In contrast, a powerful machine cannot be easily replaced by a smaller one once bought

8

An Anti-example of a good graph

Why is Cloud Important/Useful? (4/4)

 What if my network gets too congested (輻輳)?

 A neighbor may start watching Netflix all day

 My Internet Service Provider (ISP) may host too many users

 Preparing strong enough network resource beforehand is even more difficult than
preparing a powerful enough machine

 Congestion is affected by neighbors and/or other users of the same ISP

 Cloud is connected by broad network

 Many ISPs have direct connections to cloud providers

 SAKURA Internet has 1.63 Tbps bandwidth to outside world

9
https://www.sakura.ad.jp/services/datacenter/networkfacility/backbone_map.html

[Aside] Network Connectivity of SAKURA Internet

10

Backbone:
- Internal network that connects the major datacenters

of them like a backbone (背骨)

Private Peering:
- 1 vs. 1 connection with other autonomous systems (AS;

ISPs, cloud providers, etc.).
- Actual connectivity info is a business secret

IX (Internet Exchange):
- Connection with other ASes via an internet exchange

(it’s like a huge switch to connect different ASes).

Transit:
- “Upstream” ISPs to provide connectivity to the internet
- If I connect to SAKURA Internet from home, the

packets probably go through a transithttps://www.sakura.ad.jp/services/datacenter/networkfacility/backbone_map.html

More formally

 Essential characteristics of Cloud by NIST [3]

1. On-demand self-service: A consumer can unilaterally provision computing capabilities …
without requiring human interaction

2. Broad network access: Capabilities are available over the network

3. Resource pooling: The provider’s computing resources are pooled to serve multiple consumers
using a multi-tenant model

4. Rapid elasticity: Capabilities can be elastically provisioned and released … to scale rapidly
outward and inward

5. Measured service: Resource usage can be monitored, controlled, and reported, providing
transparency for both the provider and consumer of the utilized service

11
[3] P. Mell and T. Grance, “The NIST Definition of Cloud Computing”, Tech Note, National Institute of Standards and Technology, 2011

https://www.oxfordlearnersdictionaries.com/definition/english/unilaterally

Cloud Computing Models: Basics

 Terminology: XXX as a Service
 XXX is provided to users as a service

 Users do not own XXX nor manage it but acquire rights to use XXX if they pay

 Subscription (サブスク) in today's term?
 Note: “subscription” originally meant to have fixed-length (e.g., per-month) contracts of something, but サブスク

does not necessarily mean that (?)

 Examples:
 Netflix, Amazon Prime Video, Hulu, etc.: You buy rights to watch videos without having

physical copies of them (e.g., Blu-Ray Discs)

 Times Car Share: You buy rights to use cars without owing nor maintaining them

12

https://www.weblio.jp/content/%E3%82%B5%E3%83%96%E3%82%B9%E3%82%AF

Cloud Computing Models (1/3)

 Software as a Service (SaaS)
 Software (applications) are provided to users as a service

 The software is widely accessible through network

 The users do not manage the underlying OS / hardware / etc. to host the software

 Examples:
 Microsoft 365 (a.k.a. Office 365): Microsoft Office as a service

 Gmail (including @g.ecc.u-tokyo.ac.jp): Email software as a service

13

payment

rights to use
applications

Microsoft Word hosted on a cloud,
accessed over a network using a web browser

Cloud Computing Models (2/3)

 Infrastructure as a Service (IaaS)

 Computing infrastructure (processor, memory, storage, network) are provided as a service

 The infrastructures are widely accessible through network

 The users do not manage the actual hardware to host the infrastructure

 Example:

 Amazon EC2: provides VMs and containers as a service

 Google Compute Engine: (ditto)
14

payment

rights to use
CPU & memory

Infrastructure

OS

Application

Managed by the
cloud provider

Managed by the
user (user can do
whatever they want)

Cloud Computing Models (3/3)

 Platform as a Service (PaaS)
 Platforms to deploy applications onto are provided as a service

 The platforms are widely accessible through network

 The users do not manage the underlying hardware / OS / etc. to host the platform

 What is a “platform” ??
 A base that something can physically / logically stand on top of

 Enterprise apps are often not written “from scratch”, but they rely on software platforms such as
database engines (e.g., MySQL), language runtimes (e.g., JavaVM), deployment manager (e.g.,
Kubernetes)

 Examples:
 Amazon RDS: provide relational database as a service

 Azure Kubernetes Service: provide Kubernetes as a service
15

OS

Application

DB JVM k8sPlatforms

Cloud Computing Models: Summary

 Cloud computing models are categorized by the “layer” on which the computing
resource they provide resides

 From upper layer to lower: SaaS, PaaS, IaaS

 Users do not need to care about the layers below the provided resource

16

Application Platform Infrastructure

SaaS IaaSPaaS

Users cannot see what is behind the cloud

 Two perspectives to categorize deployment models

 Management of actual infrastructure: on-premise (the infrastructure is managed by the actual
users), or off-premise (the infrastructure is managed by a third party)

 Accessibility: Anyone can access and use the cloud, or only members of a single organization can
access and use the cloud

Cloud Deployment Models

17

Managed

Accessibility

On-premiseOff-premise

A
ny

on
e

Li
m

it
ed

Public Clouds

Private Clouds Private Clouds

Types of clouds categorized by the deployment model
- Public clouds: accessed by anyone && off-premise
- Private clouds: accessed by one organization &&

(on-premise || off-premise)

Public Clouds

 Clouds that anyone can access and use

 Managed off-premise

 Is it possible to manage a public cloud on-premise?? (i.e., anyone can use the cloud and the
infrastructure is managed by each user??)

 Examples:

 Amazon Web Services, Microsoft Azure, Google Cloud, SAKURA Cloud, …

18An Amazon datacenter
(Note: there are a lot of them!)

User organization
(Photo cited from [2])

No management,
but no control either

Private Clouds (1/2)

 Clouds that only members of one organization can access and use

 Managed either on-premise or off-premise

 Wait, why on earth do we host a cloud on-premise???

 It sounds breaking the principles of cloud computing

 A big organization can “pack” machines to an on-premise private cloud

 It is still a “cloud” from end-user’s perspectives and can reduce TCO

 Example: UTokyo Information Technology Center (情報基盤センター) hosts DNS servers on
behalf of other departments

19ns.dep-a.u-tokyo.ac.jp

ns.dep-b.u-tokyo.ac.jp

ns.dep-c.u-tokyo.ac.jp

DNS as a Service (private and on-premise)

ns.dep-a.u-tokyo.ac.jp
ns.dep-b.u-tokyo.ac.jp
ns.dep-c.u-tokyo.ac.jp

Private Clouds (2/2)

 Private and off-premise clouds
 Accessed only by members of one organization, but the actual infrastructures are managed by a

third-party (i.e., different organization)

 Buy your own hardware, ask a third-party to manage them (i.e., co-location), and
allow members of your organization exclusive access

 Merits:
 Predictable and controllable performance: Public clouds give you virtual CPUs and there is

no notion of performance guarantee (e.g., average floating-point operations / seconds / price)

 Better TCO in some cases: Once the scale exceeds a certain point, it is cheaper to buy
designated hardware and paying for management than using public clouds

20

Third-party

Hardware you own,
but don’t manage

Exclusive access

Security: a different aspect

 Should we choose which type of cloud to use only by the cost?

 No. What about the security?

 Examples of sensitive data that might affect the placement

 Privacy information of customers: You might want to place them in a private cloud (either
on-premise or off-premise)

 Classified information of a country: You might want to place them in a private cloud
physically located inside your country

 Even employees of prestigious companies cannot be trusted in some scenarios

21https://www.bloomberg.com/news/articles/2019-07-29/capital-one-data-
systems-breached-by-seattle-woman-u-s-says

… data from about 100 million people in the U.S. was
illegally accessed … identified by Amazon.com Inc. as
one of its former cloud service employees of breaking
into the bank’s server …

[Aside] Actual Locations of Datacenters (including Cloud Datacenters)

 The exact location of a datacenter is often (but not always) hidden to public
 Security reasons: data stored in datacenters are so mission-critical and important

 Examples:

 Locations of Amazon datacenters are leaked to WikiLeaks
 https://wikileaks.org/amazon-atlas/map/

 In other words, they were hidden if not leaked 22

An IDC Frontier Datacenter
https://www.idcf.jp/datacenter/
location/fuchu.html

Tokyo 2nd Datacenter of NTT
Communications
https://www.ntt.com/business/services/data
-center/colocation/nexcenter/japan.html

Chiba 2nd Datacenter of SCSK
https://www.netxdc.com/location/chiba2.html

23

5 mins break

Cloud Computing Internals

 Users’ view: resource is prepared almost instantly after requested

 How is this achieved?

 They build physical machines with requested specs in rush? → Of course not!

 Key technology: Virtualization（仮想化）

 Virtual machine (VM), OS-level virtualization (a.k.a. containers), network virtualization

24

cloud

Let me use 32 machines with
4 GPUs each for 12 hours

30 seconds later Here they are

Why Study “Computer Systems” Today?

 The environments surrounding systems are rapidly changing

25

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Examples of changes:

- The beginning of the ending of Moore’s law

- Massively increased parallelism: up to 64

cores / CPU

- Power wall

- Memory wall

- Increased concern in cyber security

We must study systems to make them adapt and fully utilize the new environments

Virtual Machines: What

 Virtual machines (VMs)

 Provide virtualized hardware (e.g., CPU, memory, storage) that look exactly like real one

 A whole OS can be executed on top of a VM

 Underlying resource can be partitioned to provide multiple sets of virtualized hardware

 Widely available in many platforms

 VMWare (Windows, Linux), VirtualBox (Windows, Linux, macOS), Parallels (macOS)

26Underlying (real) HW

Host OS (e.g., Linux)

Virtualized HW 1 Virtualized HW 2

Guest OS 1 (e.g., Windows) Guest OS 2 (e.g., Linux)

Application Application Resource partitioning example:
- Underlying hardware has 8 cores and 32 GB of RAM
- Virtualized hardware 1 is assigned 2 “virtual” cores

and 8 GB of RAM
- Virtualized hardware 2 is assigned 4 “virtual” cores

and 4 GB of RAM

Virtual Machines: Why

 Why are VMs useful?

 Run multiple OSes on one set of hardware (i.e., resource partitioning)

 Run different OS than the underlying host OS

 Provide different hardware than the underlying real hardware

 Examples: IBM System/360, Wii U Virtual Console (the same in Nintendo Switch??)

 Cloud use-cases

 “Pack” many users into one big server (e.g., 64 cores / server)

 Users can use any OS they want, and they have root privileges

 Strong OS-level security: users cannot see each other, unless there are no software bugs (and
possible side channel attacks…)

27

Host OS

Guest 1 … Guest nGuest 2

N users (N guest OSes on 1 server)

How to run a guest OS on top of host OS?

 Different perspective: How is an OS different from a normal program?

1. OS directly handles physical memory addresses

2. OS handles exceptions, a.k.a. interruptions (e.g., when a system call is invoked)

3. OS can freely configure the hardware (e.g., changing CPU frequency through DVFS)

 What to do: Giving guest OS an illusion that it controls everything

 In reality, something else does it on behalf of guest OS

 Something else: virtual machine monitor (VMM)

28

How to give an illusion: System Call Example

 System call (a.k.a. syscall)

 Functionalities that require OS privilege (e.g., read/write to storage, memory allocation)

 Normal programs invoke syscalls to use these functionalities by raising a software exception

29

sysenter
Your program

OS
Do the job

Syscall invocation: No-virtualization case

Syscall invocation: Virtualization case
sysenter

Your program

Guest OS

VMM

From guest OS’s view, the
exception by syscall looks like
it directly comes from your
program (illustrated by)

sysexit

sysexit

There are a lot more…

 How to give a guest OS an illusion to handle physical memory addresses?
 Keywords: Nested page table, Shadow page table

 How to “catch” when a guest OS tries to do something that requires privilege?
 Keywords: Binary translation, Para virtualization（準仮想化）, Full virtualization（完全
仮想化）, Hardware virtualization (Intel VT-x, AMD-V)

 Other important technologies:
 Device pass-through (PCI pass-through), Processor execution mode (e.g., hypervisor

mode), Nested virtualization

 Not enough time to cover everything…
 We only cover nested virtualization

30

Nested Virtualization

 Running guest OSes on top of a guest OS (that runs on top of the host OS)

 Virtualization is “nested”

 Typical use-case: User wants to run a VM on an IaaS cloud

 The same idea as single-layered virtualization is leveraged

 When a syscall is issued, an exception is first delivered to host OS

 Host OS dispatches it to guest OS 1, which believes that it’s THE only OS

 Guest OS 1 dispatches it again to guest OS 2, which also believes the same

 “The Turtles Project: Design and Implementation of Nested Virtualization”, OSDI’10

31

Underlying (real) HW

Host OS

Virtualized HW 1

Guest OS 1

Virtualized HW 2

Guest OS 2

https://en.wikipedia.org/wiki
/Turtles_all_the_way_down

OS-level Virtualization (a.k.a. Containers)

 VMs are great, but they introduce non-negligible performance overhead

 Especially large for syscalls: the same syscall takes longer in virtualized environment (recall p. 30)

 Optional exercise: compare performance of syscalls on a VM and on a real machine

 Countermeasure: Leverage OS-level virtualization (containers)

 Processes (program instances) are grouped into control groups

 Each group is assigned a set of resource (CPU time, memory, …)

 Pros: lightweight resource partitioning than virtual machines

 Cons: the single OS “kernel” is shared among all users

32

Underlying hardware

OS

Process 1 Process 2 Process 3

Control group 1 Control group 2

Sharing OS “kernel” is NOT a Big Issue

 OS == kernel + userland tools / libraries

 Example: Ubuntu 21.04 == Linux kernel 5.10 + bash 5.0 + gcc 9.0 + emacs 26.1 + Python 3.9 + …

 Sharing the kernel among containers is not a big issue in many cases

 Users can still freely choose the userland programs (e.g., compiler versions)

 This suffices requirements of many use-cases!

 Example: Running CentOS 8.0 userland on Ubuntu 20.04 (the kernel is still shared)
33

userland

https://www.gnu.org/gnu/linux-and-gnu.en.html

Container Implementation

 Step 1: Grouping processes

 Process data structure has data to express the belonging group

 Point: the structure of processes are different from non-container counterparts

 Done in OS-level → OS-level virtualization (cf. VM: everything running atop is the same)

 Step 2: Assigning resource to groups

 OS knows which processes belong to the same group

 CPU time assignment: schedule processes of the same group at once

 Memory assignment: accumulate memory usage of processes of the same group

34

Process 1 Process 2

100 MB used 400 MB used

500 MB used

Container == Docker?

 Short answer: No

 Docker originally was a set of APIs to make container easy-to-use
 Infrastructure-as-code paradigm with Dockerfiles / Dockerhub

 Filesystem separation with chroot (existing tool)

 Network separation using bridge (existing tool)

 However, Docker has evolved beyond that…
 Because Docker is a de-facto, we want to use it in the same way on different OSes

 How?: Docker on Windows provides Linux environments using a VM (HyperV)

35

An example Dockerfile

Network Virtualization: VLAN (1/2)

 IPv4 communication requires broadcasting in the edge

 This leads to network congestion (輻輳ふくそう) in large-scale networks

 Example: Machine A (192.168.0.1) communicates with machine B (192.168.0.2)

 Step 0: Machine A must know the MAC address (a.k.a. Ethernet address) of machine B

 Step 1: Machine A sends address resolution protocol (ARP) packet to the broadcast MAC address

 Step 2: Network switch(es) replicate the ARP packet and send it to every other machine

 Step 3: Machine B detects that machine A is looking for it, and sends a reply to machine A

36
A B C D A B C D

Network Virtualization: VLAN (2/2)

 VLAN limits broadcast domain to specific machines

 Reduces congestion caused by broadcast packets

 How different VLAN types work

 Port VLAN: Each port of a switch belongs to a specific VLAN ID, and broadcast packets are
replicated only with the same VLAN ID

 Tagged VLAN: Effective when extending a VLAN to multiple network switches

37
A B C D A B C D

VLAN 1 VLAN 2 VLAN 1 VLAN 2

Broadcast packets are
sent only to machines in
the same VLAN

[Aside] Side-channel Attacks (1/2)

 Is it completely safe inside VMs, VLANs, etc.?

 Stronger security is an important aspect of virtualization besides resource partitioning

 Answer to the question: No, unfortunately

 Even if you assume everything is bug-free (which you shouldn’t), still no

 Side-channel attacks

 Communication mechanisms through a “channel” that is not meant for communication

 Toy example: Sending Morse code（モールス信号）by blinking mic icon

38

1 0 0 1 1

- Imagine sending chat messages among students is prohibited

- You can still send messages by “blinking” the mic icons

- This method does not exploit any bugs, but something that is

not supposed to happen can still happen

[Aside] Side-channel Attacks (2/2)

 More realistic examples
 Detecting the control flow of a program by measuring elector-magnetic wave emitted from the

host machine [4]

 Detecting what you are talking using position sensors of HDD heads [5]

 Communication between CPU cores using thermal sensors [6]

 And of course, “spectre”, “meltdown”, and many variants

 Any effective defense?
 Maybe no, at least from cloud users’ sides …

 Fortunately, no real attacks exploiting side channels have found (a Google researcher said this,
but no reliable source exists)

39
[4] Robert Callan et al., “Zero-Overhead Profiling via EM Emanations”, ISSTA’16
[5] Andrew Kwong et al., “Hard Drive of Hearing: Disks that Eavesdrop with a Synthesized Microphone”, IEEE S&P 2019
[6] David B. Bartolini et al., “On the capacity of thermal covert channels in multicores”, EuroSys’16

core 1 core 2

heat dissipation
hot: 1 cold: 0

