
Towards Write-back Aware Software Emulator for
Non-Volatile Memory

Atsushi Koshiba∗† 1), Takahiro Hirofuchi†, Soramichi Akiyama†, Ryousei Takano†, Mitaro Namiki∗

∗Tokyo University of Agriculture and Technology
†National Institute of Advanced Industrial Science and Technology (AIST)

Email: koshiba@namikilab.tuat.ac.jp, {t.hirofuchi, s.akiyama, takano-ryousei}@aist.go.jp, namiki@cc.tuat.ac.jp

Abstract—Non-volatile memory (NVM) such as phase change memory
is a promising technology for future low-energy and high-capacity
memory systems. One of the well-known issues of NVM is its fundamental
characteristics that are different from common memory subsystems with
DRAM. In particular, the NVM write latency is much higher than DRAM
while the NVM read latency is almost the same as DRAM. The latency
asymmetry affects the performance of applications significantly. For
analyzing behavior of applications running on NVM environments, most
researchers use emulation tools due to the limited number of commercial
NVM products. However, these existing tools are too slow to emulate a
large-scale workload or too simplistic to emulate the application behavior
on NVM with asymmetric read/write latencies. This paper therefore
proposes a new NVM emulation model that is not only light-weight but
also aware of the NVM read/write latency gap. We implemented our
prototype on a commercial Intel processor. We also evaluated its accuracy
and performed case studies for practical benchmarks. The results show
that our prototype can emulate the execution time of practical workloads
according to their write behavior, while an existing light-weight emulation
model over-estimates the execution time.

I. INTRODUCTION

Recent trends of high-speed and many-core processors lead to an
increasing demand for larger memory capacity. Modern computer
systems use DRAM for main memory while scaling up DRAM
capacity is becoming difficult due to its refresh energy. Because
a DRAM cell holds its data as electric charge on a capacitor,
periodically refreshing the cell is necessary to prevent a data miss.
This energy overhead rapidly increases as DRAM scales up its
capacity. It is predicted that the refreshing energy occupies 50% of
the overall power consumption in 64 GB DRAM modules [1]. It is
also reported that a server computer with 128 GB DRAM consumes
more than 40% of its energy consumption for its main memory [2].
This energy-greedy characteristic of DRAM is an obstacle for future
large capacity memory systems.

Non-Volatile Memory (NVM) is one of the solutions to overcome
this energy constraint. NVM read/write latencies are in the order
of tens of nanoseconds, therefore it has a potential to be used as
main memory. In addition, NVM does not require refreshing to
keep its data unlike DRAM. This non-volatility prevents memory
subsystems from wasting a large amount of energy. Recent NVM
technologies have attracted a lot of attention not only in academia
but also in industry; new NVM products such as 3D-Xpoint are being
developed [3]. For these reasons, NVM products are expected to
achieve high-capacity and energy-efficient memory systems.

Although NVM is effective for energy reduction, current ap-
plications and system software for DRAM machines may not be
appropriate for future NVM systems due to the performance char-
acteristics of NVM such as latency and bandwidth. In particular,

This work was supported by JSPS Grant KAKENHI 16K00115.
1) Work done during his internship in AIST.

the latency gap between reading and writing NVM is not negligible.
For example, phase change memory (PCM) [4] represents High and
Low by changing its cell phase either of two phases: amorphous
phase (Low) and crystalline phase (High). Read operations to PCM
just measure the cell resistance, while write operations apply an
electrical pulse to the cell to heat it and change its phase. Particularly,
PCM recrystallization (changing from amorphous phase to crystalline
phase) requires long duration of pulsing. Writing PCM therefore
requires much longer latency than reading. The ITRS roadmap [5]
reports that the write latency of PCM is about 10X higher than
the read latency in 2013. It also forecasts that writing PCM will
be still 5X slower than reading it in 2026. This gap possibly leads
to performance degradation of write-intensive application programs.
For example, the results of our preliminary experiments (shown in
Section IV-C in this paper) exhibit that libquantum, a write-intensive
workload, becomes nearly 3X slower on an NVM environment than
on a DRAM environment.

To make use of future main memory with NVM, several re-
searchers have tackled to find out new system software support and
memory subsystems which are appropriate for NVM characteris-
tics [6], [7], [8]. However, the lack of available NVM devices makes
it difficult to analyze the performance of applications running on
NVM machines. Memory emulation tools are therefore essential for
researchers to analyze/evaluate the performance of their proposals
without actual NVM devices. Although there are several existing
emulation tools for NVM devices, their functions are limited in
terms of taking the higher write latency into account. Cycle-accurate
simulators [9], [10] are widely used among researchers. While they
can set read and write latencies independently in nanoseconds, these
simulators are not appropriate for large-scale workloads because
they are time-consuming. In contrast to heavy-weight simulators,
Volos et al. propose Quartz, which is a software emulator for
NVM devices [11]. Quartz runs on common DRAM machines and
estimates additional memory stall cycles on NVM machines using
CPU performance counters. It then delays the execution of processes
by the stall cycles. Such an emulation model based on software
calculations is light-weight, however, it is unaware of the NVM
read/write latency gap. Because common processors use a write-back
caching system, cache controllers hide writing to the main memory
from running processes and CPU cores. The fact makes it difficult
for software emulators to distinguish read and write access to the
DRAM memory modules.

To overcome these shortcomings of existing emulation tools, this
paper presents a light-weight NVM emulator that takes the perfor-
mance gap between reading and writing into account. Unlike Quartz
approach, our emulator classifies cache misses of the process into two
types: read-only and write-back. The former performs only reading
data from NVM, and the latter performs both reading and writing.
It assumes that write-back cache misses lead to additional CPU stall978-1-5386-1768-7/17/$31.00 c⃝ 2017 IEEE

cycles than the other on NVM systems. To estimate the number of
write-back cache misses, our emulator monitors not only CPU cache
misses, but also the behavior of other components (pre-fetchers and
cache controllers). The emulator then calculates the additional delays
caused by the two types of cache misses (read-only and wrire-back)
independently based on the emulated NVM read/write latencies. This
write-back aware approach enables an accurate emulation of NVM
devices such as PCM.

To clarify the effectiveness of our approach, we developed a
prototype of the proposed emulator on the Intel SandyBridge-E
architecture. We then evaluated the accuracy of the prototype and
performed case studies using SPECCPU 2006 benchmarks. We found
that our prototype emulates the NVM write latency with errors of
12.1% to 28.5%. We also found that existing light-weight emulation
models such as Quartz can over-estimate the execution time of bench-
mark programs due to their unawareness of the latency gap. These
results indicate that our write-back aware approach is helpful for
emulating NVM devices whose read/write latencies are asymmetric.

II. MOTIVATION

In this section, we mention the impacts of the NVM latency gap
on common write-back cacheable memory systems.

A. Memory Access Mechanism

We first describe a memory access mechanism on commodity
computers. We assume that NVM modules are byte-addressable as
with DRAM modules, and running processes can access to the
NVM modules with load/store instructions. We also assume that both
NVM and DRAM environments are write-back cacheable, which hold
modified data in cache lines and do not write the data to the memory
modules until the lines are evicted.

On such common memory systems, memory references reaching
to the main memory mostly occur when load/store instructions cause
last level cache (LLC) misses. When a CPU core executes a load or
store instruction, the CPU refers to its local cache. If the data do not
exist on the local cache, it then refers to larger caches (L2, L3, ...).
If the data do not exist even on the LLC, the core causes an LLC
miss and fetches a chunk of memory including the target data from
the memory module. When an LLC miss occurs, a cache controller
selects an LLC line where new data should be loaded according to
a certain cache management scheme (e.g., n-way set associative). At
the same time, the old data on the selected LLC line is evicted to
make room for new data.

The procedure of an LLC miss differs depending on the state of
the evicted LLC line. If the state of the line is clean or invalid, the
cache controller reads the new data from the memory module and
stores it on the LLC. On the other hand, if the state of the line is
modified, the controller not only reads new data from the module,
but also writes the modified line to the module in order to reflect the
change to the main memory. Therefore, we can find two types of LLC
misses; one that just reads data from the memory module, and the
other that induces a write-back. We define the former and the latter
as a read-only LLC miss and a write-back LLC miss, respectively.
We describe the performance difference between the two on NVM
systems.

B. Impacts of Higher Write Latency

As mentioned above, there are two types of LLC misses on
common write-back cacheable systems. The two types of LLC misses
lead to the same latency on common DRAM systems because reading
a new line and writing an old line are executed in parallel [12].

Read DRAM

Write DRAM

Read DRAM

Read NVM

LLC miss LLC miss

(with Write-back)

Read NVM

Write NVM ≈

LLC miss

Time

Time

≈

LLC miss

(with Write-back)

DRAM (Write Latency Read Latency)

NVM (Write Latency Read Latency)

Fig. 1. Penalty time of LLC misses on DRAM and NVM environment.

However, if NVM devices such as PCM are used for main memory,
the additional duration will be necessary when a modified cache line
is evicted due to its higher write latency. Fig. 1 shows the difference
of penalty time per one LLC miss between DRAM and NVM. The
upper part of Fig. 1 shows the DRAM case where the write latency
is almost the same as the read latency. As write-back operations are
completely hidden behind reading on DRAM environments, both the
two types of LLC misses result in the same penalty time, irrespective
of the occurrence of write-backs. On the other hand, the lower part
of Fig. 1 shows the NVM case where the write latency is much
longer than the read latency. We assume that write-back LLC misses
on NVM environments require longer time in order to wait for the
evictions of old lines. Although memory controllers can temporarily
hold write requests in a request queue to prevent write requests from
interfering read requests, the queue will not work well for write-
intensive applications because of its limited size. Thus, if write-back
LLC misses occur frequently, the CPU core that causes a write-back
is forced to keep stalling until the old data eviction is completed.
This problem possibly influences the processing speed of application
programs depending on their memory-access behavior. For instance,
our experimental results in Sec. IV-C show that the execution time of
libquantum, a write-intensive benchmark, becomes nearly 3X slower
on NVM than on DRAM.

C. Problem of Related Work

As described above, the asymmetric read/write latencies of NVM
have an impact on applications performance. Analyzing the effects
on performance is therefore indispensable for developing future
NVM systems. Because there are few number of commercial NVM
products, researchers are forced to use emulation/simulation tools
for their experiments. However, there are some issues in existing
tools to emulate the read/write latency gap. The most common
tool is cycle-accurate simulators. These simulators are used with
other CPU simulators and simulate full system behavior with NVM
per CPU cycle [13], [9]. This approach can set NVM read/write
latencies independently, while it is too slow to emulate large-scale
workloads. For instance, the simulation environment of NVMain [9]

Time

Suspend

Execution

M
em

o
ry

 A
ccesses

g
o

in
g

 to
 th

e

m
em

o
ry

 su
b

sy
stem

Fig. 2. Quartz approach [11]

with gem5 [14] takes about eight hours to simulate a program whose
execution takes only one second on a real machine.

On the other hand, Quartz [11] is proposed as a light-weight
emulation approach making use of Performance Monitoring Counters
(PMC) with which each CPU core of Intel processors is equipped.
Quartz monitors the number of DRAM accesses of the target process
during the process execution and inserts additional delays based on
the obtained information and a given NVM access latency. Fig. 2
shows the Quartz emulation model. Quartz measures the number
of DRAM accesses caused by the target process using PMCs at a
specific interval named Epoch. It then calculates the additional delay,
∆, that is expected to occur when the process runs on slower NVM
devices. ∆i, the additional delay in Epochi, is defined as Eq. (1):

∆i = MAi × (NVMlat −DRAMlat) (1)

where MAi is the number of LLC misses causing stalls on the target
process, and NVMlat and DRAMlat are NVM access latency and
DRAM access latency, respectively. Quartz uses POSIX signals to
suspend the process execution for ∆i and to resume it. This approach
causes only a slight emulation overhead which is negligible.

Although the Quartz approach has an advantage on the process-
ing overhead over cycle-accurate simulators, it does not take the
read/write latency gap into account. One of the difficulties to adapt
it to the latency gap is that current PMCs do not support monitoring
the number of write-backs per CPU core. As mentioned above, when
a CPU core causes an LLC miss, whether a write-back occurs is
determined by the state of the cache line selected in accordance with
the cache coherent scheme. Because cache controllers are responsible
for managing states of LLC lines and synchronizing LLC coherency
among the cores, a CPU core itself and its counters do not know
when a line is evicted to the main memory. In addition, LLC
misses are caused by not only CPU cores, but also hardware pre-
fetchers. Modern processors have multi-cores and each core has a pre-
fetcher. Since hardware pre-fetching is performed asynchronously,
pre-fetchers cause write-backs without being noticed by CPU cores.
These facts make it difficult for the emulation approach using PMCs
to measure the actual number of write-back LLC misses caused
by a certain process. To overcome this issue, our emulation model
estimates per-core write-back LLC misses using the performance
monitoring feature of cache controllers in addition to PMCs.

III. WRITE-BACK AWARE NVM EMULATOR

This section proposes a light-weight emulation model that distin-
guishes write-back LLC misses and read-only LLC misses.

A. Basic Idea

We assume that write-back LLC misses lead to longer CPU stalls
than read-only LLC misses. To take the difference between read and
write latencies into account, our emulation model monitors two types

M
em

o
ry

 A
ccesses

g
o

in
g

 to
 th

e

m
em

o
ry

 su
b

sy
stem

()

Time

Suspend

Execution

Fig. 3. Our approach

of LLC misses independently unlike Quartz approach. Our approach
allows users to evaluate applications performance with NVM devices
whose access latency is asymmetric.

Our emulator injects delays into the target process depending on
the number of LLC misses like Quartz. However, unlike Quartz, our
model divides LLC misses into two types; one just reads data from
memory modules (read-only) and the other induces both reading and
writing (write-back) as shown in Fig. 3. MAWB

i in Fig. 3 is the
number of write-back LLC misses, and MARO

i is the number of read-
only LLC misses within Epochi. These two types of LLC misses
satisfy the following condition:

MAi = MAWB
i +MARO

i (2)

We assume that MAWB
i makes CPU cores stall for longer time than

MARO
i . Let NVMWrite

lat be the average NVM write latency and
let NVMRead

lat be the average NVM read latency (NVMWrite
lat ≫

NVMRead
lat), our model represents the additional delay ∆

′
i as fol-

lows:

∆
′
i = MAWB

i × (NVMWrite
lat −DRAMlat)

+MARO
i × (NVMRead

lat −DRAMlat)
(3)

To calculate the value of ∆
′
i, the emulator needs to monitor MAWB

i

and MARO
i of the target process periodically at run-time. However,

PMCs cannot measure the number of write-back LLC misses directly
because of their functional limitation. We therefore present a way to
estimate the number of write-back LLC misses and achieve a write-
back aware NVM emulator.

B. Run-time Estimation of Read-only/Write-back Memory Accesses

This section describes how to calculate the two types of LLC
misses (MARO

i and MAWB
i) independently. Our emulation model

enables the calculation by making use of a function of cache
controllers in addition to information obtained from PMCs. We
assume that processors have cache pre-fetchers (PF) and out-of-order
pipelining to accelerate main memory accesses. We also assume that
both our emulator and the emulated process are running on the same
multi-core processor during the emulation.

In addition to the PMCs’ unawareness of write-backs, overlapping
LLC misses by memory-level parallelism techniques of common
processors is also a problem to calculate MAWB

i and MARO
i .

Quartz approach has already proposed a solution for the LLC miss
overlapping and our model follows their model, while the two models
differ in terms of the write-back awareness. Because of the PFs
and out-of-order pipelining, two or more LLC misses are sometimes
performed concurrently and CPU cores avoid long stalls to access to
the memory modules. If the emulator does not take overlapping LLC
misses into account, it over-estimates additional delays. To exclude
the number of LLC misses executed in parallel, our model measures
the number of CPU stall cycles caused by LLC misses. Overlapped

TABLE I
PERFORMANCE EVENTS OF SANDY BRIDGE-E FAMILY

Non-Architectural Performance Events [15]
L2stalls CYCLE ACTIVITY:STALLS L2 PENDING
LLChit MEM LOAD UOPS RETIRED:LLC HIT
LLCmiss, LLCmiss,cpui MEM LOAD UOPS MISC RETIRED:LLC MISS
LLCmiss,PFi

OFFCORE RESPONSE.ALL PF CODE RD.LLC MISS.DRAM N &
OFFCORE RESPONSE.ALL PF DATA RD.LLC MISS.DRAM N

Uncore Performance Events for CBo [16]
WB LLC VICTIMS.M STATE

LLC misses are included in the number of LLC misses counted
by PMCs, while they do not increase CPU stall cycles. Our model
therefore counts the core stall cycles caused by LLC misses in an
epoch and then divides the cycles by the DRAM access latency of
the machine. In this way, it estimates the number of LLC misses that
actually suspend the CPU execution. Our model defines MAWB

i and
MARO

i as shown in Eq. (4):

MAWB
i =

MA STALLWB
i

DRAMlat
,

MARO
i =

MA STALLRO
i

DRAMlat

(4)

where MA STALLWB
i and MA STALLRO

i are the total cycles
of core stalls with MAWB

i and with MARO
i , respectively.

To calculate MA STALLWB
i and MA STALLRO

i , our model
extends the equation provided in the documentation of Intel
CPUs [12]. The documentation provides the equation to calculate the
total time of core stall cycles caused by LLC misses, which makes no
distinction between read-only and write-back LLC misses, as follows:

MA STALLi = L2stalls

× W × LLCmiss

LLChit +W × LLCmiss

(5)

where L2stalls is the total number of core stall cycles caused by L2
cache misses, and LLChit and LLCmiss are the numbers of LLC
hits and LLC misses of a core, and W is the ratio of the LLC miss
latency (DRAM access latency) to the LLC hit latency. In Eq. (5),
LLCmiss can be classified into two types (write-back and read-only)
as we have already described in Sec. II-A. Our model then defines
MA STALLWB

i and MA STALLRO
i as Eq. (6) and Eq. (7):

MA STALLWB
i = L2stalls

× W × LLCWB
miss

LLChit +W × LLCmiss

(6)

MA STALLRO
i = L2stalls

× W × (LLCmiss − LLCWB
miss)

LLChit +W × LLCmiss

(7)

where LLCWB
miss is the total number of write-back LLC misses.

Due to the lack of performance events of PMCs, LLCWB
miss cannot

be counted directly. Our model therefore estimates LLCWB
miss using

other available monitoring functions. To estimate LLCWB
miss, there are

two key factors: (1) the number of write-backs within a certain period,
and (2) the degree of contribution of the process to these write-backs.
To measure the factor (1), our model uses an uncore performance
counter implemented on the cache controller. Intel processors such
as Intel Xeon have LLC coherency engines (CBo) that maintain the
coherency among CPU cores [16]. Because CBo counters monitor

the number of cache lines written back to the memory modules, they
enable our model to measure the factor (1) directly. Next, to estimate
the factor (2), our model measures the number of all LLC misses
caused by CPU cores and their PFs in the system. We expect that the
degree of contribution of a certain CPU core to write-backs can be
estimated based on the proportion of its LLC misses to the whole.
For example, when the total number of LLC misses in an epoch is
200,000 and the number of write-backs is 50,000, the total number
of write-back LLC misses in the epoch is 50,000. In the epoch, when
the number of LLC misses caused by a certain core occupies 20% of
all the LLC misses, the number of write-backs caused by the core is
expected to be also 20% of all the write-backs. Thus, the number of
write-back LLC misses of the core is expected to be 10,000. Based
on these considerations, our model estimates LLCWB

miss with Eq. (8):

LLCWB
miss = WB

× LLCmiss∑n−1
i=0 LLCmiss,cpui +

∑n−1
i=0 LLCmiss,PFi

(8)

where WB is the total number of write-backs, n is the num-
ber of CPU cores of a processor,

∑n−1
i=0 LLCmiss,cpui is the

sum of the numbers of LLC misses caused by every CPU core,∑n−1
i=0 LLCmiss,PFi is the sum of the numbers of LLC misses

caused by every PF. Eq. (8) calculates the ratio of LLC misses of the
target process to LLC misses of the whole system, and then multiplies
the ratio and the number of write-backs. Thus, the equation gives us
the estimated number of write-back LLC misses caused by a specific
process.

C. Applying to Intel SandyBridge-E Architecture

To ensure that our emulation model is applicable to commer-
cial processors, we implemented a prototype of our emulator for
Intel SandyBridge-E architecture. Table I shows the performance
counter events corresponding with the variables of the above equa-
tions [15], [16]. Here, DRAMlat and W are static values relying on
the specific performance of a given machine and can be measured
using a tool such as Intel Memory Latency Checker [17]. Our proto-
type is portable because other Intel processor families are equipped
with performance counters that support the equivalent events.

IV. EVALUATION

To show the effectiveness of our approach, we evaluated our
prototype of the proposed emulator on an Intel Xeon E-2650 machine
which has the Intel SandyBridge-E Architecture. Table II shows the
detail of our evaluation environment. We used Intel Memory Latency
Checker to measure the values of DRAMlat and W .

A. Wbbench: Tool to Measure Write-back Latency

To evaluate the precision of our model emulating the NVM write
latency, we developed a tool named wbbench that measures the

TABLE II
OUR EVALUATION ENVIRONMENT

Processor Intel Xeon E5-2650
OS Debian 8.5 (Linux 3.18.5)
Epoch 20 ms
DRAMlat 90.7 ns
W 4.5

wbbench (){

memory_region = malloc(line_count * 64);

generate_random_address_list(memory_region, line_count);

struct cacheline *clp = get_nextline_from_list();

start_time = get_time();

while(clp != NULL){

clp->value = 0xFFFF; // modify line

clp = get_nextline_from_list(); // load next line (cause write-back)

}

end_time = get_time();

return wb_latency = (end_time – start_time) / line_count;

}

Fig. 4. Pseudo code of wbbench

average write-back LLC miss latency. Fig. 4 shows a pseudo code of
wbbench. First, wbbench calls malloc() to reserve a certain amount
of memory region. It then calls generate random address list() to
generate a list of cache-line aligned addresses within the reserved
memory region. The addresses in the list are aligned to the size
of an LLC line (64 Bytes) and arranged at a random order. While
executing the while() loop, wbbench writes a value to the cache
line that is currently referred by a pointer (clp). Next, it calls
get nextline from list() to refer to the address of the next cache line
in the list and store it in the pointer, which causes an LLC miss with
a line eviction. Since the addresses in the list are arranged randomly,
wbbench prevents memory parallelism caused by the PFs and the
out-of-order mechanism. Wbbench measures the total elapsed time
during the while() loop and calculates the average write latency.

Wbbench guarantees get nextline from list() to always induce a
write-back LLC miss by reserving the memory region that is suffi-
ciently bigger than the LLC size. However, such memory references
over a wide range of address space cause frequent TLB misses which
lead to additional latencies. To prevent TLB misses, we enabled 1 GB
transparent hugepages during experiments with wbbench. Because the
memory region reserved by wbbench falls within one page owing to
the hugepage support, wbbench can measure a pure write latency.

B. Validating Accuracy of Emulation with wbbench

We evaluated the accuracy of our emulation model using wbbench.
We applied our prototype emulator to wbbench. If our prototype can
emulate the NVM write latency accurately, the latency emulated by
our prototype and the latency measured by wbbench become the same
value or quite close. To ensure that every get nextline from list() call
induces a write-back LLC miss, we set the size of the memory region
reserved by wbbench to 40 MB, which is twice as large as the LLC
size of our environment (20 MB).

Table III shows the evaluation results. The results show that our
prototype emulates the selected NVM write latencies with errors of
12.1% to 28.5%. These errors are occurred because our prototype
over-estimates the number of write-back LLC misses of the target

TABLE III
WRITE LATENCY EMULATED BY OUR PROTOTYPE, AND WRITE LATENCY

MEASURED BY WBBENCH.

Emulated latency Measured latency error
100 ns 112.1 ns 12.1 ns (12.1 %)
200 ns 244.6 ns 44.6 ns (22.3 %)
300 ns 376.4 ns 76.4 ns (25.5 %)
400 ns 510.0 ns 110.0 ns (27.5 %)
500 ns 642.5 ns 142.5 ns (28.5 %)

process. To investigate the reason, we compared the number of write-
backs obtained from CBo counters and the number of LLC misses
obtained from PMCs with the actual number of reading/writing to the
memory modules obtained from the memory controller. As a result,
we found that our prototype correctly measures the number of write-
backs, while it under-estimates the number of LLC misses. We will
try a more detailed investigation for our future work.

C. Applying to SPECCPU 2006

To show the effectiveness of our emulation model for estimating
performance of future NVM devices, we applied our prototype to
practical workloads. We executed benchmarks of SPECCPU 2006
and applied our prototype to them to emulate their behavior with
NVM modules. We measured the execution time when our prototype
delays the benchmark execution based on its write-back behavior and
the assigned NVM write latency. We used one compute-intensive
benchmark (hmmer) and two memory-intensive benchmarks (mcf
and libquantum) in the experiment. We set the emulated NVM read
latency to the same value as the DRAM read latency, while we set
the emulated NVM write latency to 1X, 2X, 3X, 4X, and 5X of
the DRAM read latency (90.7 ns). To clarify the effect of write-
back behavior on processing speed, we also measured memory write
throughputs during the benchmark execution. To measure the write
throughput, we used an internal performance counter of the memory
controller. The counter counts the total bytes written in the memory
modules in a certain period of time. The write throughput was
calculated by dividing the total written data size by the total execution
time of the benchmark.

Fig. 5 shows the emulated execution time of each benchmark
program, and Fig. 6 shows their average write throughputs. According
to the results, the hmmer keeps its performance as the same as in the
DRAM environment because the hmmer causes a small number of
write-backs. On the other hand, the mcf, which is a write-intensive
workload, leads to the increase of the execution time and the degrease
of the write throughput due to the high NVM write latency. The
results also show that the performance degradation of the libquantum
is more significant, because the libquantum performs writing to the
main memory more frequently than the mcf. These results indicate
that our model can emulate the behavior of practical workloads
running on NVM environments according to their memory access
characteristics.

Moreover, to show the benefit of our write-back aware emulation
model, we compared our model with write-back unaware emulation
models such as Quartz. To evaluate the behavior of write-back
unaware models using our prototype, we measured the execution time
of libquantum when we set both emulated read/write latencies to the
same value (e.g., 5X higher than DRAM). Fig. 7 shows the emulated
execution time of libquantum at five types of read/write latency
settings. As shown in the results, there is a significant performance
difference between the case both reading and writing are slow and

702.1

519.4
657.8 702.4

552.8

886.2

702.6
586.2

1144.7

702.6
621.8

1403.2

702.6 662.2

1653.8

0.0

500.0

1000.0

1500.0

2000.0

hmmer mcf libquantum

Execution Time [s] 1x 2x 3x 4x 5x

Fig. 5. Execution time of each benchmark when the emulated NVM write
latencies are set to 1X, 2X, ..., 5X longer than the DRAM latency and the
emulated NVM read latency is always set to the same as the DRAM latency.

0.8
147.5

2118.7

0.8
139.7

1572.2

0.8
131.2

1216.1

0.8
123.7

992.4

0.5
116.0

842.4

0.0

500.0

1000.0

1500.0

2000.0

2500.0

hmmer mcf libquantum

Write Throughput [MB/s] 1x 2x 3x 4x 5x

Fig. 6. Emulated write throughput of each benchmark. The experimental
condition is the same as Fig. 5.

the case only writing is slow. This performance gap is difficult to
analyze by write-back unaware approaches such as Quartz because
they cannot set read/write latencies independently. In contrast, our
write-back aware emulation model is effective for finding out perfor-
mance impacts of the asymmetric read/write latencies. To exhibit the
advantages of our model more clearly, we will improve our prototype
to adapt it to interference between multiple threads and evaluate the
accuracy of our model for multi-thread workloads.

V. CONCLUSION & FUTURE WORK

In this paper, we presented a software emulation model for the
asymmetric read/write latencies of NVM using DRAM. Our model
calculates the execution time of a process with NVM devices based
on the number of LLC misses and the number of LLC lines written
back to the memory modules. We implemented a prototype of our
emulation model and evaluated it on a commercial Intel processor.
The results of our preliminary evaluation show that the accuracy of
our prototype is acceptable to grasp a rough trend of applications
performance with NVM.

Our future work includes mitigating the errors of our prototype,
evaluating the effectiveness for emulating actual NVM devices (e.g.,
PCM, STT-MRAM), and validating the accuracy for multi-threads
workloads. Since the energy consumed by reading and writing NVM
is different, we assume that our write-back aware emulation model is
also effective for evaluating energy performance of NVM devices. we
will clarify the effectiveness of our model for the energy asymmetry
of NVM for our future work.

REFERENCES

[1] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 1–12.

[2] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller, “Energy management for commercial servers,” Computer,
vol. 36, no. 12, pp. 39–48, Dec 2003.

657.8

1653.8

2548.5

3782.9

4925.4

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

DRAM 1x read,

5x write

5x read/write

(Quartz Approach)

5x read,

10x write

10x read/write

(Quartz Approach)

Execution Time [s]

Fig. 7. Execution time of libquantum at each latency setting.

[3] Intel. (2017) Intel R⃝optaneTMssd dc p4800x series. Intel.
[Online]. Available: http://www.intel.com/content/www/us/en/solid-
state-drives/optane-solid-state-drives-dc-p4800x-series.html

[4] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakr-
ishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla,
B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory
technology,” Journal of Vacuum Science & Technology B, Nanotech-
nology and Microelectronics: Materials, Processing, Measurement, and
Phenomena, vol. 28, no. 2, pp. 223–262, 2010.

[5] ITRS. (2013) International technology roadmap for semiconductors
2013 edition. The International Technology Roadmap for Semicon-
ductors (ITRS). [Online]. Available: http://www.semiconductors.org/
clientuploads/Research Technology/ITRS/2013/2013PIDS.pdf

[6] M. Giardino, K. Doshi, and B. Ferri, “Soft2lm: Application guided
heterogeneous memory management,” in 2016 IEEE International Con-
ference on Networking, Architecture and Storage (NAS), Aug 2016, pp.
1–10.

[7] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems,
ser. EuroSys ’14. New York, NY, USA: ACM, 2014, pp. 15:1–15:15.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009,
pp. 133–146.

[9] M. Poremba and Y. Xie, “Nvmain: An architectural-level main memory
simulator for emerging non-volatile memories,” in 2012 IEEE Computer
Society Annual Symposium on VLSI, Aug 2012, pp. 392–397.

[10] S. Bock, B. R. Childers, R. Melhem, and D. Mosse, “Hmmsim: a
simulator for hardware-software co-design of hybrid main memory,” in
2015 IEEE Non-Volatile Memory System and Applications Symposium
(NVMSA), Aug 2015, pp. 1–6.

[11] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
lightweight performance emulator for persistent memory software,” in
Proceedings of the 16th Annual Middleware Conference, ser. Middleware
’15. New York, NY, USA: ACM, 2015, pp. 37–49.

[12] Intel. Intel 64 and ia-32 architectures optimization
reference manual. Intel Corporation. [Online]. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf

[13] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 7, pp. 994–1007, July 2012.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[15] Intel. Intel 64 and ia-32 architectures software de-
veloper’s manual. Intel Corporation. [Online]. Avail-
able: http://www.intel.in/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

[16] Intel. Intel xeon processor e5-2600 product family:
Uncore guide. Intel Corporation. [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/design-
guides/xeon-e5-2600-uncore-guide.pdf

[17] V. Viswanathan. Intel memory latency checker. Intel Corporation. [On-
line]. Available: https://software.intel.com/en-us/articles/intelr-memory-
latency-checker

