
Diagnosing Performance Fluctuations of
High-throughput Software for Multi-core CPUs

Soramichi Akiyama, Takahiro Hirofuchi, Ryousei Takano
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{s.akiyama, t.hirofuchi, takano-ryousei}@aist.go.jp

Abstract—Performance fluctuations are common in various
software such as databases and software networking stacks. A
fluctuation refers different performance (latency, throughput) for
similar or identical data-items (e.g. requests, queries, packets) due
to non-functional states such as cache warmth. While tail latency
caused by fluctuations badly affect user experiences, diagnosing
them is difficult as reproducing non-functional states in a
controlled environment is not feasible. To this end, we estimate
elapsed time of each function for each data-item individually to
observe a single fluctuation occurrence online so that reproducing
non-functional states is no longer needed. The issue is that
instrumentation-based tracing methods are too heavy because a
function takes a few micro seconds in high-throughput software
systems for the multi-core age. We propose a hybrid approach
of instrumentation and hardware-based sampling. It enables to
diagnose performance fluctuations of high-throughput software
systems with acceptable and adjustable overhead. Our evalua-
tions show that it can clearly show a performance fluctuation
that occurs by different cache-warmth in a sample application,
and that it can be also applied to realistic software.

I. INTRODUCTION

Performance fluctuations are common across a variety of
software such as databases and software networking stacks.
Performance (e.g. latency, throughput) of such software often
fluctuates for even two identical data-items (e.g. queries,
packets, requests) depending on non-functional states of the
software such as cache warmth, resource contention, and other
factors. Huang et al. ran the TPC-C workload on popular
database engines and confirmed that “the standard deviation
was twice the mean” [1]. Dobrescu et al. reported that the per-
formance of a software packet-processing platform drops by
27% in the worst case due to shared resource contentions [2].

Diagnosing performance fluctuations is challenging. Fluctu-
ations often occur only with a complex set of non-functional
states that appear during a compound test or in a production
environment. Analyzing the phenomena later offline is very
difficult because reproducing the non-functional states of the
time when a fluctuation has occurred is not feasible due to
three reasons: (1) pinpointing a specific part of non-functional
states as the root cause before an analysis is impossible thus as
many non-functional states as possible should be reproduced,
(2) non-functional states cannot be easily quantified, and (3)
non-functional states change every time a new data-item is
processed. For example, if performance of a database engine
fluctuates only when its on-memory cache is fragmented and

This work is supported in part by the Project for Developing Innovation
Systems of the MEXT, Japan.

the fragmentation is fixed after processing few queries, then
reproducing the phenomenon is a hard task.

To diagnose performance fluctuations without reproducing
them in a controlled environment, we estimate the period of
time each function takes for each data-item individually. This
enables to observe a single occurrence of a performance flu-
ctuation online and reproducing the fluctuation in a controlled
environment is no longer required. In the aforementioned
example of a database engine, the function that fetches tables
from the cache may take much longer time for a specific data-
item, implying that the cache performance is degraded when
the data-item has been processed.

High-throughput software systems in the multi-core age
process many data-items per time unit, thus a function takes
a very short period of time such as several micro seconds
or even shorter. This arises a challenge to obtain elapsed
time of each function per data-item. A common approach that
inserts instrumentation code into the beginning and the end of
each function (e.g. gprof [3], Vampir [4], cProfile [5])
cannot be applied as-is. First, instrumenting every function is
too heavy for our purpose because a function may take only
several micro seconds. Second, selecting which function to
instrument to reduce the overhead is not doable because a
function that takes only a short period of time in a test run
may become the root cause of a fluctuation in a production
run, which is the nature of performance fluctuations.

We propose a hybrid approach of coarse-grained instrumen-
tation and hardware-based low-overhead sampling to tackle the
challenge. The key ideas are as follows:

1) Instrumentation is applied only to code points where
the target program starts and finishes processing a data-
item. This reduces the overhead by reducing the number
of times the instrumentation code is invoked to ’twice
per data-item’ from ’twice per function’.

2) Elapsed time of each function per data-item is estimated
by a low-overhead hardware-based sampling mecha-
nism. The overhead is adjustable via its sampling rate
without specifying which function to estimate.

As the sampling mechanism, we utilize Precise Event Base
Sampling (PEBS), a hardware functionality of Intel CPUs that
samples the timestamp and the value of the instruction pointer
(and other data that are irrelevant to this paper). The overhead
of PEBS is approximately 250 nano seconds per sample [6],
and the overall overhead is adjustable by controlling the
sampling rate without specifying which function to sample.



The technical issue is that mapping each PEBS sample to
a particular data-item is not straight-forward. A PEBS sample
does not include any information about the data-item being
processed at the time the sample has been taken. Furthermore,
because PEBS is hardware-based, extending it to sample other
information than pre-defined is not doable. We solve this issue
by leveraging characteristics of a modern software architecture
that aims to be scalable on multi-core CPUs. To reduce context
switching overhead, modern high-throughput software systems
divide the work to process a data-item to smaller tasks, each of
which is pinned to designated a core. By recording timestamps
when a data-item enters and leaves a CPU core, we can map
PEBS samples taken between the two timestamps on the core
to that data-item. Our evaluations show that our method can
diagnose a performance fluctuation caused by different cache
warmth for each data-item in our sample application, and it
can also be applied to a real application using DPDK [7].

This paper is structured as follows. Section II explains the
context and challenges of this work. Section III describes our
hybrid approach and its prototype implementation. Section IV
shows the results of our feasibility study. Section V discusses
possible further improvement on our method. Section VI
reviews the related work and Section VII concludes the paper.

II. BACKGROUND

A. Performance Fluctuations

A performance fluctuation is a phenomenon where per-
formance (e.g. throughput, latency) of a software system
fluctuates even for similar or identical data-items (e.g. queries,
packets, requests) due to non-functional states of the software
such as cache-warmth and shared resource contentions. For ex-
ample, when a database engine processes two identical queries
within a short interval, the first one can take significantly
longer time than the second one because the target table may
not be cached on memory when the first one is processed.

Performance fluctuations are of great concern because tail
latencies can greatly affect the user experience and approached
by researchers [8], [9]. Huang et al. [1] measured the latencies
of queries of the TPC-C workload on widely used database
engines (MySQL, Postgres and VoltDB). They reported that
“the standard deviation was twice the mean” and “the 99th
percentile was an order of magnitude greater than the mean”.
Dobrescu et al. [2] reported that the performance of a software
packet-processing platform drops by 27% in the worst case
due to shared resource contentions. Another example that we
found is the access control list (ACL) functionality of DPDK
(Data Place Development Kit) [7]. The latencies of two very
similar packets differ by several micro seconds depending on
the number of ACL rules applied to each packet.

B. Leveraging Traces to Diagnose Fluctuations

Performance analysis tools provide either (or both) profiles
or/and traces of target programs. A trace includes events
that happen during a program run (e.g. function calls, cache
misses) with timestamps. A profile summarizes performance
metrics averaged over a whole run or for some time period

Trace
Request Func- Event Time-

tion stamp (us)
#1 A Enter 00010
#1 A Leave 00100
#2 A Enter 00145
#2 A Leave 00155
... ... ... ...

#50 C Enter 04918
#50 C Leave 04923

Profile
Func- Total
tion Time
A 250 us
B 100 us
C 50 us

Fig. 1. A trace (left) and a profile (right). A profile shows “averaged” results
only and cannot find performance fluctuations. A trace shows each event with
timestamps that can help finding performance fluctuations.

(e.g. 10 sec, 5 min). A profile is useful for understanding
overall performance characteristics, while a trace is useful to
analyze each event with a deeper focus. Figure 1 illustrates a
trace and a profile of a web server that invokes three functions
to process a request. Note that it is an imaginary example to
illustrate the concept. The profile shows elapsed time of each
function (A, B, C) that are accumulated over the whole run.
The trace, on the other hand, shows events (entering / leaving
functions in this example) with a timestamp for each request.

A performance fluctuation occurs in a complex set of non-
functional state that appears during a compound test workload
or a production run. Reproducing the non-functional states of
the time when a fluctuation has occurred is not feasible due to
three reasons. (1) Pinpointing a specific part of non-functional
states as the root cause before an analysis is impossible thus as
many non-functional states as possible should be reproduced.
(2) Non-functional states cannot be easily quantified. (3) Non-
functional states can change every time a new data-item is
processed. For example, reproducing the cache warmth of a
machine into another machine is not easily conducted.

We diagnose performance fluctuations of a software system
with a trace that records elapsed time of each function for
each data-item. A trace can catch a single occurrence of
a fluctuation thus reproducing non-functional states into a
controlled environment is no longer required. For example in
Figure 1, the trace clearly shows a performance fluctuation
where function A takes 100−10 = 90 us for request #1 while
it takes only 155 − 145 = 10 us for request #2. Achieving
our goal requires a trace to be per-data-item and per-function,
which arises challenges that we explain in the next section.

C. Challenges on Obtaining Traces

Existing tracing tools such as gprof [3], Vampir [4]
and cProfile [5] rely on instrumentation either into the
source code or the binary of a target program. They taint
code points under interest by means of marking function calls.
For example, gprof inserts calls to a marking function named
mcount to the beginning of every function. It is called every
time the target program calls a function, so that the timestamp
(and other program states) is recorded every time a function is
invoked. cProfile, the built-in profiler of Python, also inserts
marking function calls to trace program states.

Challenges appear when existing tracing tools based on
instrumentation are used to diagnose performance fluctuations.



Fig. 2. Per-request elapsed time of each function of NGINX.

Fig. 3. Overview of the proposed hybrid approach.

First, instrumenting every function is too heavy a function may
take very short period of time in high-throughput software
systems for the multi-core age. Figure 2 shows per-request
elapsed time of functions of a web server. We set up NGINX
and executed the Apache benchmark from a different machine
connected by a 1 Gbps link. The default index page (612 bytes)
is loaded with 1 K simultaneous connections up to 300 K
requests in total. For simplicity, we used one worker thread
and all requests are processed in one CPU core. The workload
took 44.8 seconds, which means the average elapsed time per
request was 149 us (the network latency affects only once
and can be ignored). We used perf [10] to measure cycles
spent on each function and the per-request elapsed time of
function f is estimated by 149× cf

ca
, where cf is the number

of cycles f takes and ca is the all cycles spent by the server.
The results show that many functions take less than 4 us and
instrumenting every function to obtain per-request traces is
too heavy. Second, selecting which function to instrument
to reduce the overhead cannot be done a-priori to solving
performance fluctuations. Due to the nature of performance
fluctuations, a function that takes only a small period of time
in a test run may take much longer time for a specific data-
item. We need a novel way to obtain traces with low and
adjustable overhead without selecting which function to trace.

III. PROPOSAL: HYBRID APPROACH

A. Overview

In order to diagnose performance fluctuations of high-
throughput software systems, we propose a hybrid approach
that combines instrumentation and sampling working comple-
mentary to each other. The main idea is to use instrumentation

TABLE I
CHARACTERISTICS BY EACH TRACING MECHANISM

Sampling Instrumentation

Implemented by hardware software

Overhead low high

Timing periodic per each data-item

Adjustable yes no

What to trace pre-defined software-controlled

Traced data includes timestamp, timestamp,
instruction pointer data-item ID

only when it is necessary and to use hardware-based light-
weight sampling mechanism in other places. Data retrieved by
the two means are integrated together to form a single trace.

Figure 3 shows an overview of our approach. The colored
bars on the top show an execution path of a target program,
which our method traces. Each bar shows that the program
executes a specific function during the length of the bar and
different colors indicate different functions. The white circles
in the middle show data retrieved by instrumentation and
the black circles at the bottom show ones retrieved by a
hardware-based sampling mechanism. A marking function is
instrumented and invoked every time the target program starts
processing a new data-item and finishes processing it. The
marking function records the timestamp and the data-item ID
so that mappings between a time period and the data-item be-
ing processed during the period is obtained. Because the mark-
ing function is called only twice per data-item, the overhead
by instrumentation is greatly reduced compared to existing
tracing mechanisms that invoke a marking function every time
a function is called. Sampling is applied to the target program
simultaneously with instrumentation. Instruction pointers with
timestamps are periodically recorded (or “sampled”) so that
mappings between timestamps and functions being executed
at the time points are obtained. The two mappings are later
integrated to estimate elapsed time of each function per data-
item to diagnose performance fluctuations.

Table I shows characteristics of the two mechanisms. In-
strumented code has to be invoked every time a data-item is
started / finished processing and the timing is not adjustable,
while sampling is periodic and the sampling rate is adjustable
without specifying which function to sample. On the other
hand, instrumentation can trace everything that is visible from
software including the data-item ID being processed, while the
sampling can trace a pre-defined set of information including a
timestamp and a value of the instruction pointer. The overhead
of instrumentation is relatively high because it is software-
based, while the sampling mechanism utilized in this paper
is all hardware-based and light-weight. The details of the
mechanisms and how to integration the two types of data are
described in the following sections.

B. PEBS: Details, Importance, and Issue

For the sampling part, we utilize Precise Event Based Sam-
pling (PEBS), a hardware-based sampling mechanism of Intel



Fig. 4. Sample intervals of PEBS and a software-based sampling mechanism. perf with the traditional performance counters is used as a representative of
software-based mechanisms. It asks the OS to sample program states. The throttling mechanism of perf is disabled. The sample interval of perf is as long as
10 us no matter how high the sampling rate is. The sample interval of PEBS can be almost 1 us and close to the ideal case.

CPUs. It is promising because our previous work [6] showed
that the overhead is approximately 250 ns per sample (note that
the unit is nano second). On the other hand, software-based
sampling mechanisms incur much overhead due to execution
switches between a target program and the sampling software.
Since PEBS is a part of the performance counter functionality,
we hereafter refer non-PEBS performance counters to as the
traditional performance counters to avoid confusions.

To configure PEBS, pairs of hardware events and their reset
values (referred to as R) are specified. The number of pairs
that can be specified simultaneously depends on the CPU
model, but we use only one pair in our approach. A hardware
event, such as “retired micro operations” and “cache misses”,
is chosen from the pre-defined set of events that are listed in
the CPU specification [11]. After PEBS is enabled, the CPU
counts the number of occurrences of the specified event for
each CPU core using a designated counter register for the core.
The counter registers are set to −R at first. When a counter
register overflows, the CPU samples the values of general-
purpose registers (e.g. eax), the instruction pointer, and the
hardware timestamp of the core and reset the counter register
to −R. Therefore, a sample is taken every R occurrences of the
specified event. The sampled values are stored into a memory
region referred to as the PEBS buffer. An interruption is raised
from the CPU when (and only when) the PEBS buffer has
become full. The operating system receives the interruption
so that it can process the samples in the PEBS buffer.

Our method utilizes PEBS because software-based sampling
mechanisms cannot sample at a short enough sample interval.
A sample interval is the time difference between two consecu-
tive samples. Sample intervals of software-based mechanisms
include overhead to switch execution from target programs
to sampling software that save program states. Our approach
requires the sample interval to be in the level of one micro
second. A function may take only several micro seconds in
high-throughput software systems (as observed in Figure 2),
and several (at least two) samples must be taken for a function
to estimate elapsed time of it using the samples.

Figure 4 shows the relationship between achieved sample in-
tervals and the configured sampling rates for a software-based
sampling mechanism and PEBS. The evaluation environment
is in Table II. The linux perf tool is used as a representative of

software-based sampling mechanisms. It supports both PEBS
and the traditional performance counters, but we use the
latter in this experiment. Note that even though the traditional
performance counters themselves are hardware, they rely on
software to sample program states every time a counter register
overflows. We disable the throttling mechanism of perf that
automatically limits the sampling rate. For PEBS, we used a
simple kernel module described in Section III-E. The samples
were stored in memory to avoid IO overhead. The x axis
shows the reset value (which controls the sampling rate) and
the y axis shows the achieved sample interval. The hardware
event specified was UOPS_RETIRED.ALL, which “counts
the number of micro-ops retired” [11]. Three workloads (astar,
bzip2, gcc) from SPEC CPU 2006 are used. “Ideal” indicates
the ideal case where doubling the sampling rate (halving the
reset value) makes the sample interval halved. Note that the
sample intervals for the same reset value are different across
benchmarks because the average “instructions per cycle” are
different for each benchmark. The results show that the sample
interval of PEBS (hardware-based) can be almost 1 us while
the one of perf (software-based) cannot be shorter than 10 us
no matter how high the configured sampling rate is, which
means that PEBS is promising for our purpose.

The technical issue in using PEBS for our purpose is that
PEBS only samples pre-defined set of information and it is not
extensible because PEBS is all hardware-based. PEBS samples
the values of the general purpose registers such as eax and
ebp, the hardware timestamp, the instruction pointer, and
some additional information that are not useful for our purpose
such as the abort reason of hardware transactions. Therefore,
a PEBS sample cannot be directly mapped with a data-
item by itself. This contrasts with software-based sampling
mechanisms that can sample any information but are much
slower. We solve this challenge by integrating data retrieved by
PEBS with ones retrieved by coarse-grained instrumentation.

C. Instrumentation

We instrument a marking function that records timestamps
and data-item IDs into code points where the target program
starts and finishes processing a data-item. We refer these
points to as data-item switches hereafter. Finding data-item
switches to instrument is not always straight-forward if the
target program is built with an arbitrary software architecture.



Fig. 5. Modern software architecture for high scalability. Each core has only
one thread and each thread executes a part of the task required to process a
data-item. The number of data-item processed on a core at a time is one.

We leverage the characteristics of a modern software archi-
tecture that aims to be highly scalable on multi-core CPUs to
find data-item switches to instrument. Figure 5 illustrates the
software architecture. Each core invokes at most one thread
and there are the same (or fewer) number of threads as the
number of cores in one CPU. A thread executes a part of
the whole task that is required to process one data-item (e.g.
packet receiving, packet forwarding) and is connected with
other threads by software queues. This architecture is better
in scalability than a traditional architecture where the same
number of threads as the number of data-items being processed
are invoked [12]. It is used by many major software systems
that aim very high throughput such as DPDK, MariaDB and
NGINX. In the development model of DPDK, a thread is
pinned to each core and packets are passed through the threads
using software queues. MariaDB claims in its manual that
“there should be a single active thread for each CPU on the
machine” [13]. NGINX also uses the same architecture [14].

To concretely discuss how to detect data-item switches, we
further categorize the software architecture into two types:

1) Self-switching: in this architecture, data-item switches
are explicitly written in the source code in small number
of places such as the beginning of a worker thread and
an event handler.

2) Timer-switching: in this architecture, data-item switches
are forcefully incurred by timers, in addition to explicit
places. The idea is to guarantee a latency threshold when
a data-item is taking too much time to be processed.

The difference between the two is explained by a case where
consecutive heavy and light data-items are processed. In
the self-switching architecture, the light data-item cannot be
processed until the system finishes processing the heavy one.
It is good for throughput because there is no overhead of extra
data-item switching that typically causes context switches. On
the other hand, in the timer-switching architecture, the system
can finish processing the light data-item before it finishes the
heavy one. The self-switching one is adopted by DPDK and
MariaDB, and the timer-switching one is used in NGINX.

Self-switching architecture switches data-items only when
it explicitly wants to. This corresponds a code point where a
thread starts processing a new data-item or an event handler
starts processing a new event, typically at the top of a busy
loop that includes the actual work of the thread or the
event handler. We detect this type of data-item switches by

Fig. 6. Proposed Hybrid Approach

recording timestamps in these code points. We discuss the
whole procedure our method in Section III-D.

Timer-switching architecture switches data-items when the
amount of time spent for a particular data-item has reached the
threshold, in addition to data-item switches explicitly incurred.
These switches are typically implemented by a scheduling
mechanism such as a combination of a timer and user-level
threading. Therefore, detecting data-item switches requires to
record the activities of the scheduler of a target program. We
discuss how we can potentially extend our method to this type
of data-switches in Section V.

D. The Procedure of Our Proposal

This section describes our hybrid approach to diagnose
performance fluctuations for high-throughput software systems
built with the self-switching architecture. Figure 6 illustrates
the overall procedure. It shows the case where there is only one
CPU core for simplicity, but the same procedure is executed
on every core of a multi-core CPU. Note that PEBS supports
sampling core-related events for every core simultaneously.

1) The target program is executed with instrumentation and
sampling enabled. Every time a data-item switch occurs,
the timestamp and the data-item id are recorded by the
instrumented code. For example, the timestamp t0 and
the data-item id #0 are recorded on the first data-item
switch in the figure. At the same time, timestamps and
the value of the instruction pointer are sampled and
recorded periodically by PEBS.

2) The data obtained in the above step are integrated. First,
the timestamp included in each PEBS sample (such as ta
and tb in the figure) are compared with the ones recorded
at data-item switches (t0, t1, t2). The PEBS sample with
the timestamp ta belongs to data-item #1 because t0 <
ta < t1. Second, the values of the instruction pointer
included in each PEBS sample are compared with the



symbol table of the target program. Symbols are the
names of functions and the addresses of their beginning
and ending points that are obtained from the binary of
the target program.

3) The elapsed time of function fn for data-item #M is
calculated by the difference between the timestamps of
the first and the last PEBS sample that belong to {fn,
data-item #M}.

E. Implementation

PEBS is configured by a small kernel module and helper
programs called simple-pebs [15]. We modified it to support
Skylake micro-architecture. The reason to use a module with
minimum set of functionalities is that linux perf APIs have
non-negligible overhead due to the too rich features [16].

The kernel module allocates PEBS buffer and enables PEBS
functionality with the given reset value (R) and hardware
event. PEBS samples program states every time the specified
event has occurred R times, and the CPU invokes an inter-
ruption when the PEBS buffer has become full. The kernel
module receives the interruption and asks a helper program to
copy the data from PEBS buffer to userspace memory. In our
prototype, we output the copied data into an SSD and then
notifies the kernel module that the data is safely saved so that
PEBS can be re-enabled. There are several possible ways to
reduce the storage-related overhead including double buffering
(so that the helper program can re-enable PEBS immediately),
but the focus of this paper is to prove that our approach is
promising and we leave these optimization for future work.

To trace data-item switches, we inserted log-printing state-
ments that output the timestamp and the data-item ID (specific
content differs depending on each workload). The prototype
outputs them directly to SSD, but again it is possible to
temporarily store them to the main memory and periodically
dump them to minimize the overhead.

IV. FEASIBILITY STUDIES

A. Methodology

This section shows that our approach can obtain elapsed
time of each function in per-data-item basis to help diagnose
performance fluctuations. Our feasibility studies are twofold:

1) First, we use a sample application that we build as
a proof-of-concept of the approach. It mimics query
processing applications with an in-memory cache mech-
anism. The performance fluctuates depending on the
cache warmth even for queries with the same content.
Our method can clearly observe the fluctuation.

2) Second, we target an access control list (ACL) applica-
tion of DPDK. The packets going through it experience
different latencies depending on their TPC headers. This
fluctuation occurs in a specific non-functional state that
is hard to reproduce in an offline environment. Our
method accurately shows elapsed time of the bottleneck
function for each packet individually and helps under-
standing the root cause.

TABLE II
EVALUATION ENVIRONMENT

CPU Core i7 6700K (Skylake Micro arch.)
Motherboard Supermicro X11SAE-F

OS Debian GNU/Linux 8.9 (Linux kernel 4.9)
NIC 10 Gbps Intel X520-DA2 × 2

Memory 64 GB (16 GB DDR4 × 4)
SSD 512 GB (Crucial M4 CT512M4SSD2)

Fig. 7. Overview of the sample app. Each thread is pinned to a designated
CPU core. Thread 0 receives queries and pass them one by one to Thread 1.
Thread 1 does some work whose amount increases in proportion to the n in
the queries. The performance fluctuates due to the caching mechanism.

Table II shows the evaluation environment. We use a CPU
with the Skylake micro architecture because sampling times-
tamps with PEBS is only supported since Skylake. Other hard-
ware and software have no special requirement and everything
is a commodity. The machine has two NICs to receive packets
from one NIC and send them to another one after processing.

B. Proof of Concept

In this section, we use our sample application as a proof-of-
concept of our approach. The sample application mimics query
answering applications and it is based on the self-switching
architecture (Section III-C). Figure 7 illustrates how it works.
It invokes two threads (Thread 0 and Thread 1), each of
which is pinned to a designated CPU core. Thread 0 receives
queries as inputs, and pass them one by one to Thread 1.
A query consists of its id and a number (n) and Thread 1
applies linear transformations to n × 1000 (= N ) points
{xi, yi} (i = 1...N ) and returns the results. The application’s
performance fluctuates because it has an in-memory cache
mechanism. If the results of some points to be processed are
already cached, the elapsed time is shortened because there
is no need to re-calculate the results. To apply our method,
Thread 1 is instrumented by two log(d.id, timestamp)
lines to detect data-item switches. The logging code is inserted
only at the beginning and the end of the while loop although
the while loop includes three function calls (f1, f2 and f3).

Figure 8 shows per-data-item elapsed time of each func-
tion of the sample application obtained by our method. The
hardware event specified for PEBS is UOPS_RETIRED.ALL
and the reset value is 8000. The x axis shows queries, each
of which includes a unique id and a number n. The y axis
shows the elapsed time of each query that are broken down



Fig. 8. Per-data-item elapsed time of each function obtained by our approach.
It visualizes performance fluctuations where the 1st and 5th queries take much
longer time. Queries with the same n have the same color.

into functions. Results for queries that have the same n are
filled with the same color.

Figure 8 clearly shows that the performance of the sample
application fluctuates even for queries with the same n. The
1st query has the same n (= 3) with the 2nd, 4th and 8th

queries. However, the 1st one takes much longer time than
the others because the results are not yet cached when the
1st query is input. The same is observed for the 5th, 7th and
9th queries, which have the same n (= 5). The 5th one takes
much longer time than the others because only 3000 points
are previously processed and the other 2000 points have to be
newly processed. These fluctuations are only visible by traces
with per-data-item basis. Even though the fact that the 1st

query is slower than the others can be detected by means
such as service level logging, our method provides richer
information than service level logging can. For example, the
results show that f3 takes much longer time than f1 when the
cache does not hit, and this knowledge is given because our
method obtains elapsed time of each function per data-item.

C. Applying to a Realistic Application

1) The Application and its Performance Fluctuations: In
this section, we show that our method can be applied to a
real application. We use a sample application included in the
DPDK [7] framework. DPDK is a framework for building
high throughput software networking stacks. The application
uses the Access Control List (ACL) functionality of DPDK to
implement a simple firewall.

The ACL application has three worker threads (RX, ACL
and TX) pinned to designated CPU cores. The RX thread
receives packets and pushes them into a software queue
connected with the ACL thread. The ACL thread retrieves the
packets from the queue, and checks the installed ACL rules to
judge if the packets should be forwarded or not. The packets
are pushed to another software queue connected with the TX
thread when the packets pass the ACL rules. The TX thread
retrieves the packets and sends them to another NIC.

Packets going through the application experience different
latencies (performance fluctuation) when a complex set of
ACL rules that hold a specific condition is installed. Even
though that this issue can be observed by just logging times-

tamps of ingress and egress packets, to further analyze the
phenomenon requires traces that show performance metrics
for each function per data-item. Although the phenomenon is
reproducible by installing the same ACL rules into a controlled
environment and sending the same packet, it is a very hard task
if not impossible. Because the root cause of the fluctuation is
not known a-priori, not only the ACL rules but also as many
non-functional states have to be reproduced.

The performance fluctuations stem from implementation
designs of the ACL functionality of DPDK:

1) It stores the ACL rules into trie structures to efficiently
treat many of ACL rules. This is because a firewall of
a large-scale datacenter tends to have thousands or even
tens of thousands of ACL rules.

2) It divides the ACL rules into multiple trie structures.
This is because storing all ACL rules into a single trie
consumes too much memory when there are many rules.

3) A key of the trie structure consists of three parts:
the source address (4 bytes), the destination address
(4 bytes), and a combination of the source and the
destination ports (2 + 2 = 4 bytes) of the TCP header.

From design (3), the computational cost to find rules that
match a given packet can differ depending on how many
bytes within a key has to be checked. For example, if a trie
does not include any rule that matches the source address, the
destination address and the source/destination ports need not
to be checked anymore. However, if a trie includes a rule that
matches the source address, the destination address and the
source/destination ports, the full length of the key is checked.
In addition, this difference is amplified by the number of tries
because the same is applicable to every trie.

2) Tracing the ACL Application: We apply our method to
the ACL application. We instrument and sample the ACL
thread within the application because the other two threads
(RX, TX) does almost nothing. The hardware event specified
is UOPS_RETIRED.ALL. The source code of the ACL thread
is instrumented to detect data-item switches. Because DPDK
uses the self-switching software architecture, the instrumen-
tation is trivial. The ACL thread is modified to output the
timestamp right after it retrieves a packet from the RX thread
and right before it pushes a packet to the TX thread.

Table III shows the installed ACL rules. The source and the
destination addresses are the same across the all rules. For the
rules with the source port of 1 to 666, the destination port
ranges from 1 to 750. For the rules with the source port of
667, the destination port ranges from 1 to 500. The number
of rules is 666× 750 + 500 = 50, 000 in total. The rules are
stored in 247 trie structures. The vanilla DPDK stores ACL
rules into at most 8 trie structures no matter how many rules
exist, but we modified the source code to enlarge the limit.

Test packets are sent from GNET [17], a hardware network
tester. It has three 10 Gbps NICs and two of them are
connected to the test machine. The packets are sent from NIC
0 of GNET to NIC 0 of the test machine, and sent back from
NIC 1 of the test machine to NIC 1 of GNET after passing
the ACL application. Packets are sent one by one with a short



TABLE III
INSTALLED ACL RULES (666× 750 + 500 = 50000 rules)

Src Addr Dst Addr Src Port Dst Port Action

192.168.10.0/24 192.168.11.0/24 1 1 Drop
... ... ... ... ...

192.168.10.0/24 192.168.11.0/24 1 750 Drop

192.168.10.0/24 192.168.11.0/24 2 1 Drop
... ... ... ... ...

192.168.10.0/24 192.168.11.0/24 2 750 Drop

... ... ... ... ...

192.168.10.0/24 192.168.11.0/24 666 1 Drop
... ... ... ... ...

192.168.10.0/24 192.168.11.0/24 666 750 Drop

192.168.10.0/24 192.168.11.0/24 667 1 Drop
... ... ... ... ...

192.168.10.0/24 192.168.11.0/24 667 500 Drop

interval (not burstly) so that DPDK does not batch them. How
to retrieve the IDs from batched data-items is future work.

TABLE IV
TEST PACKET TYPES

Type Src Addr Dst Addr Src Port Dst Port

A 192.168.10.4 192.168.11.5 10001 10002
B 192.168.10.4 192.168.22.2 10001 10002
C 192.168.12.4 192.168.22.2 10001 10002

Table IV shows the three types of test packets. For type A,
both the source and destination addresses match some rules. To
check if they pass through the firewall, the tries are traversed
using all the three parts of the keys (src addr, dst addr and
src/dst ports). For type B, the source address match some rules
but the destination address does not match any rule. To check if
they pass through the firewall, the tries are traversed using two
components of the keys (src addr and dst addr). For type C,
neither part of the key matches any rule. To check if they pass
through the ACL, the tries are traversed only using the first
part of the key (src addr). Packet latencies differ depending on
the number of parts used to traverse the tries. Thus, the type
A packets experience the longest latency and the type C ones
experience the shortest latency.

3) Results and Findings: We estimate the elapsed time
of the rte_acl_classify function for each type of the
packet using our method. This function includes the main loop
for the task to investigate if each packet can pass through the
ACL rules or not.

Figure 9 shows the estimated per-packet elapsed time of
the rte_acl_classify function. The x axis shows reset
values and the y axis shows the elapsed time. The values are
averaged over 10,000 runs and the error bars show the standard
deviations. The “baseline” were obtained by inserting instru-
mentation code that output the timestamp at the beginning and
the end of rte_acl_classify function. The “baseline”
shows the golden data to which we compare the estimation

Fig. 9. Estimated per-packet elapsed time of rte acl classify function. The x
axis shows reset values, and the y axis shows the estimated elapsed time. The
error bars show the standard deviations. The label “baseline” for the x axis
means that the value was estimated by a log-based method for comparison.

Fig. 10. Overhead of our method for different reset values. The x axis shows
reset values and the y axis shows the increased latency for the reset value.

by our method. The results clearly show that the performance
fluctuates by more than 100% (approx. 6 us for packet type C
and 12 – 14 us for packet type A). Please carefully note two
things: (1) We calculated the average to discuss the accuracy
of our estimation, but our method estimates elapsed time of
each function for every packet individually. (2) The baseline
is obtainable by instrumentation method in this case because
we a-priori know that this function fluctuates. In normal
cases where the bottleneck is not known, instrumentation-only
methods cannot be applied as we discuss in Section II-C.

Figure 10 shows the overhead of our method for each reset
value. The x axis shows reset values and the y axis shows the
latency increase. The latency was measured by the hardware
tester (GNET). The overhead for reset value R is calculated by
LR −L∗, where LR refers the average latency of the packets
for the reset value and L∗ refers the average latency of the
packets when no profiling is applied.

The total size of the samples generated by PEBS was
270 MB/s, 194 MB/s, 153 MB/s, 125 MB/s, and 106 MB/s,
respectively for the reset values of 8K, 12K, 16K, 20K, and
24K. Suppose the CPU has 16 cores and the same analysis
is applied to all the cores, the accumulated size per CPU
are 4.3 GB/s, 3.1 GB/s, 2.5 GB/s, 2.0 GB/s and 1.7 GB/s,
respectively for each reset value. Directly dumping all samples
to durable storage (as we do in our prototype implementation)
can be expensive, but this cost can be amortized by online
processing of the samples. For example, one can estimate the
elapsed time of each function online and dump raw samples
only when the estimation diverges from the average by a
threshold in order to analyze the phenomenon later offline.



Note that 4.3 GB/s is only less than 4% of memory bandwidth
per socket of recent CPUs. Intel Xeon Platinum 8153 processor
has 16 cores and 6 memory channels, resulting in 127.8 GB/s
memory bandwidth with DDR4-2666 modules.

The results show that both accurate estimation and moderate
overhead are achieved together with a proper reset value (e.g.
16K in this experiment). We conclude from this that our
method is useful to diagnose performance fluctuations of real
applications that occur in a production environment with a
specific non-functional state.

V. DISCUSSIONS

A. Applicability to Timer-Switching Architecture

We discuss how our method can be extended for the timer-
switching architecture. In the timer-switching architecture, a
data-item switch may occur even when processing of a data-
item has not yet finished. This mechanism is typically im-
plemented by a user-level lightweight scheduling mechanism
such as user-level threading (e.g. [18]).

The key idea is to use a general-purpose register to store
the data-item ID that is currently processed. When a data-item
enters a core, the data-item id is stored to a general-purpose
register such as r13. User-level threading mechanisms switch
the values of general-purpose registers when a new user-level
thread is scheduled. Therefore, once a general-purpose register
has a data-item id, it is automatically switched to the id of a
different data-item when the underlying user-level threads are
switched. In this way, every PEBS sample has the id of a data-
item that should be mapped to it. This requires that r13 is
never overwritten by anyone including the C library and the
OS. As a first step, we confirmed that linux kernel and glibc
can be built and work normally with no r13 usage (except in
the assembly code) by adding a compiler option.

B. Limitations

1) Limitation of Sampling-based Traces: Sampling based
traces cannot provide meaningful information on functions that
take shorter than the sample interval. The number of samples
that belong to such functions is at most one and we cannot
estimate the elapsed time. Thus, the sampling rate must be
high enough to sample functions that are potential bottlenecks.
In contrast, profiles can estimate “averaged” elapsed time of
a function that is shorter than the sample interval. The same
function is executed many times within a profile because the
profile is averaged over a sufficient amount of time. The
elapsed time of a function is calculated by T × n

N , where T
is the total elapsed time, n is the number of samples mapped
to the function and N is the number of all samples.

2) Limitation of Hardware-based Sampling: Hardware-
based sampling mechanisms can only sample a pre-defined
set of information. One of the drawbacks is that PEBS does
not support recording the call graph. As a result, if a sample
mapped to function g exists between samples mapped to
another function f, we can only “guess” that g is called by f
but cannot guarantee it. This may lead to wrong understanding
when a small utility function is called many times.

C. Choice of Reset Values

Our approach has a trade-off between overhead and ac-
curacy as seen in the experiment for the ACL application.
Lowering the overhead requires a smaller sampling rate and
lower accuracy, and higher accuracy results in larger overhead.
PEBS does not support specifying the sample interval with
a time period. Thus, finding a right spot within the trade-off
needs two relationships: (1) between reset values and overhead
and (2) between reset values and sample intervals. The former
is analyzed in our previous work [6]. It revealed that the extra
execution time target programs take is accurately predictable
from the number of samples taken during an execution,
(almost) regardless of the application characteristics.

The relationship between reset values and sample intervals
is more complex because PEBS does not support counting bare
cycles that can be used as a timer. HW events other than cycles
(e.g. micro operations retired) do not occur with a constant
interval, thus sample intervals can neither be a complete
constant. However, we confirmed for the PEBS samples taken
for the ACL application that the sample intervals have a strong
linearity with the reset values and the deviations are very
small, which means that the sample interval is predictable from
a given reset value. For finding the best reset-value for a given
overhead requirement, one can refer our previous work [6].

D. Measuring Other Performance Metrics

In this paper focuses on how to estimate elapsed time of
each function in a per-data-item basis. It is straight-forward
to extend our method to retrieve other performance metrics
such as the number of cache misses. One can just specify
the hardware event that counts cache misses to be counted
by PEBS. In this case, a PEBS sample (with a timestamp) is
taken every time cache misses occur specified amount of times.
The number of PEBS samples associated with each function
(per data-item) by our integration approach means that how
many cache misses the function has incurred. For example, if
the number of PEBS samples that belong to function f1 and
data-item #1 is 10 and the number for f1 and data-item #2
is 2, it means that the number of cache misses incurred by
f1 fluctuates. Besides cache misses, PEBS supports counting
various metrics for each core including the number of branch
mis-predictions and the number of load instructions [11].

VI. RELATED WORK

A. Instrumentation-only Methods

Per-data-item analysis of high-throughput software systems
only with instrumentation are widely tackled. Ousterhout et
al. [19] propose blocked time analysis that measures the
amount of time a Spark task is blocked due to IO. They use
logs (either existing or added) to record the blocked time for
each Spark task individually. Their method requires to add
logs to appropriate places (they reported that “existing logging
was often incorrect or incomplete”), while in our scenario we
cannot decide where to insert logs before solving a fluctuation.

VProfiler [20] instruments large scale software to find the
root cause of performance fluctuations. To avoid the overhead



of instrumenting every function, it starts from instrumenting
functions near the root and refines the result by instrumenting
each of the child functions run by run. However in our
scenario, performance fluctuations occur in a specific set
of non-functional state and it is difficult to reproduce the
fluctuations to refine the results for VProfiler.

Zhao et al. propose a non-intrusive method for per-data-
item tracing [21], [22]. They do not require any modification
to the source code of target programs. Their analysis on major
large-scale software (e.g. Hadoop) found that they already
output enough logs to distinguish each data-item in the default
logging level. However, software that are used internally in
enterprises or laboratories, or software that are under devel-
opment may not output enough logs to apply their methods.
They also propose Log20 [23], which automatically finds
the best placement of log-printing statements. Although they
provide a light-weight instrumentation library, their purpose is
to find the root cause of system failures but not performance
fluctuations. Their evaluation shows that they only insert 0.08
log-printing statements per data-item, which is too few to
diagnose performance fluctuations.

B. Software-based Sampling

Software-based sampling is widely used to obtain traces,
while we use a hardware-based method in this paper. The
difference between software- and hardware-based sampling
mechanisms is that the former can sample any information that
is visible from software but it incurs large overhead (and the
other way around; the latter is light-weight but not flexible).

vTune [24] and perf [10] are widely used performance
analysis tools that utilize software-based sampling. They use
the traditional performance counters (see Section III-B for the
definition) to count hardware events such as cache misses, and
sample program states by software every time an event occurs
the specified number of times. Pyflame [25] is a sampling-
based performance analysis tool for Python, which uses the
ptrace system call to periodically attach and detach the tar-
get Python process. In software-based sampling mechanisms,
target programs must briefly be suspended to allow the tools
to sample consistent program states. In perf and vTune, the
performance counter mechanism raises an interruption to the
OS and the execution is forcefully switched from the target
program. In Pyflame, target programs are suspended by the OS
every time they are attached using the ptrace system call.
The overhead by these brief suspensions of the execution can
be negligible for profiles or coarse-grained traces, but it cannot
be afforded in our approach as we have shown in Section II-C.

VII. CONCLUSIONS

Performance fluctuations are common across a variety of
software. Traces are useful to diagnose performance fluctu-
ations that occur only with a specific non-functional state.
However, obtaining a trace for every function and every data-
item incurs too much overhead for high-throughput software.
We proposed a hybrid approach that combines coarse-grained
instrumentation and sampling with adjustable overhead. Case

studies showed that it pinpoints performance fluctuations of
our sample application a real DPDK application.

REFERENCES

[1] J. Huang, B. Mozafari, G. Schoenebeck, and T. F. Wenisch, “A top-down
approach to achieving performance predictability in database systems,”
in ACM International Conference on Management of Data (SIGMOD),
2017, pp. 745–758.

[2] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable
performance in software packet-processing platforms,” in USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI),
2012, pp. 141–154.

[3] J. Fenlason and R. Stallman, “GNU gprof The GNU Profiler,” https:
//ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html mono/gprof.html.

[4] “VAMPIR 9.4,” https://www.vampir.eu/.
[5] “The python profilers,” https://docs.python.org/3.6/library/profile.html.
[6] S. Akiyama and T. Hirofuchi, “Quantitative evaluation of intel pebs over-

head for online system-noise analysis,” in Int’l Workshop on Runtime
and Operating Systems for Supercomputers (ROSS), 2017, pp. 3:1–3:8.

[7] “DPDK data plane development kit,” http://dpdk.org/.
[8] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and

K. S. McKinley, “Few-to-many: Incremental parallelism for reducing
tail latency in interactive services,” in International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015, pp. 161–175.

[9] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “Prioritymeister: Tail latency qos for shared networked storage,”
in ACM Symposium on Cloud Computing (SoCC), 2014, pp. 29:1–29:14.

[10] “perf: Linux profiling with performance counters,” https://perf.wiki.
kernel.org/index.php/Main Page.

[11] Intel Corporporation, “Intel 64 and ia-32 architectures software devel-
oper manuals,” https://software.intel.com/articles/intel-sdm.

[12] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for well-
conditioned, scalable internet services,” in the Symposium on Operating
Systems Principles (SOSP), 2001, pp. 230–243.

[13] “Thread pool in mariadb,” https://mariadb.com/kb/en/library/
thread-pool-in-mariadb/.

[14] “Inside nginx: How we designed for performance & scale,” https://www.
nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/.

[15] “simple-pebs,” https://github.com/andikleen/pmu-tools/tree/master/
simple-pebs.

[16] V. M. Weaver, “Self-monitoring overhead of the linux perf event perfor-
mance counter interface,” in International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015, pp. 102–111.

[17] Y. Kodama, T. Kudoh, R. Takano, H. Sato, O. Tatebe, and S. Sekiguchi,
“Gnet-1: gigabit ethernet network testbed,” in International Conference
on Cluster Computing (IEEE Cluster), 2004, pp. 185–192.

[18] J. Nakashima and K. Taura, “Massivethreads: A thread library for high
productivity languages,” Concurrent Objects and Beyond, vol. 8665, pp.
1–18, 2014.

[19] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2015, pp. 293–307.

[20] J. Huang, B. Mozafari, and T. F. Wenisch, “Statistical analysis of latency
through semantic profiling,” in the European Conference on Computer
Systems (EuroSys), 2017, pp. 64–79.

[21] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: A non-intrusive request flow profiler for distributed
systems,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014, pp. 629–644.

[22] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-intrusive
performance profiling for entire software stacks based on the flow
reconstruction principle,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 603–618.

[23] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Symposium on Operating Sys-
tems Principles (SOSP), 2017, pp. 565–581.

[24] Intel Corporporation, “Intel vtune amplifier,” https://software.intel.com/
en-us/intel-vtune-amplifier-xe.

[25] E. Klitzke, “Pyflame: Uber Engineering’s Ptracing Profiler for Python,”
https://eng.uber.com/pyflame/.


