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SUMMARY Live migration plays an important role on improving ef-
ficiency of cloud data centers by enabling dynamically replacing virtual
machines (VMs) without disrupting services running on them. Although
many studies have proposed acceleration mechanisms of live migration,
IO-intensive VMs still suffer from long total migration time due to a large
amount of page cache. Existing studies for this problem either force the
guest OS to delete the page cache before a migration, or they do not con-
sider dynamic characteristics of cloud data centers. We propose a parallel
and adaptive transfer of page cache for migrating IO-intensive VMs which
(1) does not delete the page cache and is still fast by utilizing the storage
area network of a data center, and (2) achieves the shortest total migration
time without tuning hand-crafted parameters. Experiments showed that our
method reduces total migration time of IO-intensive VMs up to 33.9%.
key words: live migration, virtualization, cloud performance

1. Introduction

Virtualization techniques are highly important for cloud
computing. Cloud data centers enjoy easy maintenance, iso-
lation across users, and high resource utilization thanks to
virtualization. Live migration [2] is one of the virtualization
techniques utilized in cloud data centers. It allows dynami-
cal relocation of virtual machines (VMs) without disrupting
the services running on them, which achieves high memory
utilization [3], load balancing [4] and low energy consump-
tion [5] of cloud data centers. Because live migration is the
fundamental building block of these studies, efficient live
migration is the key to apply them to real-world data cen-
ters.

Migrating a VM requires to transfer the memory of the
target VM, which can be a few gigabytes to tens of giga-
bytes. Among the large amount of memory usage, page
cache (a.k.a. file cache or buffer cache) dominates a large
portion when the VM runs IO-intensive workloads. Page
cache is a widely-adapted mechanism to improve perfor-
mance of disk IO operations and is equipped in most modern
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operating systems. Large amount of page cache prolongs
live migration thus it must be approached to achieve effi-
cient live migration. Existing studies tackle this problem by
either (1) force the guest OS to delete the page cache be-
fore a migration to shrink the memory size [6], [7], or (2)
use the storage area network (SAN) for transforming page
cache [1], [8], [9]. However, the former studies greatly pe-
nalize the IO performance of the VM due to the loss of the
page cache, and the latter studies cannot adapt to the dy-
namic characteristics of cloud data centers (described in de-
tain in Sect. 3.3).

In this paper, we propose a parallel and adaptive mech-
anism to efficiently transfer page cache during a live migra-
tion. The technique utilizes the storage area network (SAN)
and the general purpose network (GPN) of a data center
to transfer page cache in parallel via both of them, while
adaptively determining which network to use for each mem-
ory page. Our experiments using WebServer, Postmark, and
TPC-C workloads showed that our method greatly reduced
total migration for various IO-intensive workloads (thanks
to the parallelism), without manually tuning how much por-
tion of page cache must be transferred via SAN (thanks to
the adaptiveness).

This paper is structured as follows. Section 2 explains
the background and motivates the challenge. Section 3 de-
scribes our core ideas. Section 4 shows the overview of
our method and how it shortens total migration time. Sec-
tion 5 illustrates technical contributions. Section 6 explains
the implementation details. Section 7 shows the evaluation
results. Section 8 gives further discussions. Section 9 refers
related work and Sect. 10 concludes the paper.

2. Background

2.1 Live Migration and Its Applications

Live migration of VMs (or simply live migration) is one of
the virtualization techniques that makes today’s cloud com-
puting paradigm different from traditional grids/clusters. It
enables a VM to move from one host to another without
interrupting services running on the VM. Live migration is
used to improve efficiency (of both resource and energy), to
achieve fault tolerance, and to ease data center maintenance.

Dynamic optimization of VM placement, or simply dy-
namic VM placement, is an important application of live mi-
gration. It improves the overall performance of a data center,
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such as energy consumption, resource utilization, and load
balancing. Changes of usage pattern and load of the VMs
on a cloud are highly dynamic and unpredictable, thus dy-
namic VM placement is an essential technique to adapt to
the changes.

Examples of dynamic VM placement are: VMs with
similar memory contents are dynamically consolidated to
share the identical memory pages and reduce the overall
memory usage of the data center [3]; Overloaded VMs are
packed into under-utilized hosts while taking the network
topology into account [4]; VMs under low load are live mi-
grated into small number of physical hosts to turn off spare
hosts and reduce the energy consumption [5].

2.2 Technical Details of Live Migration

Live migration of a VM requires to transfer (a) memory
pages (b) disk image (c) device states (e.g. CPU registers)
of the target VM. The primary focus of live migration re-
searches is how to efficiently transfer the memory pages.
The disk image is too large to transfer at a migration time
thus to locate it on a shared storage such as NFS is com-
mon. The device states are in contrast very small and easy
to transfer.

Pre-copy live migration is the most well-known mech-
anism of live migration. It was proposed by Clark et al. [2]
and Nelson et al. [10], and widely implemented in hypervi-
sors such as KVM [11] and Xen [12]. Transferring the mem-
ory pages of a target VM has three phases in pre-copy live
migration:

1. All the memory pages of the migrated VM are trans-
ferred at first. For example, if the VM’s memory foot-
print is 1 GB, the amount of transferred memory in this
phase is also 1 GB.

2. Some memory pages are updated while other pages are
transferred because the VM keeps running during a mi-
gration. The updated memory pages are transferred
again until the number of remaining memory pages be-
come sufficiently small.

3. The VM is suspended for a short period to transfer the
remaining memory pages and device states.

Although many researches have proposed novel tech-
niques for the second phase [13]–[17], the first phase is not
yet well optimized for VMs that treat large data. This prob-
lem must be solved because the first and the second phases
are equally important since they both transfer large number
of memory pages. The details of the problem we tackle are
discussed in Sect. 2.3.

2.3 Large Memory Consumption for Page Cache

Among a large amount of memory transferred in the first
phase of a migration, restorable page cache dominates it
when the VM runs IO-intensive workloads. Page cache is an
on-memory cache mechanism to hide the gap between the
accessing speed of memory and storage, and memory usage

Fig. 1 Amount of restorable page cache in the memory under Web-
Server, Postmark, and TPC-C, workloads, normalized by the total memory
usage of the VM.

for page cache can be very large because modern operating
systems use as many free memory pages as possible for page
cache. Restorable page cache refers memory pages whose
data can be restored from the identical disk blocks even if
the pages are deleted, that is, all memory pages cached for
read operations and memory pages cached for write opera-
tions and then flushed back to the disk.

Figure 1 shows the amount of restorable page cache
contained in the memory of VMs running IO-intensive
workloads. The x-axis shows the elapsed time from the be-
ginning of the workload, and the y-axis shows the normal-
ized amount of restorable page cache. The values are nor-
malized by being divided by the total memory usage of the
VM. WebServer is a workload that simulates a web server
under high load. A load generator outside of the VM ac-
cesses the web contents with high access rate. Postmark is
a workload to measure IO performance of small files to es-
timate server performance for web and mail services. TPC-
C is a workload that simulates the typical database access
pattern for an online shopping web site. The detailed de-
scriptions of WebServer, Postmark, and TPC-C workloads
are given in Sect. 7. The figure shows that in all three work-
loads many memory pages (more than 70% of all pages)
are identical to disk blocks due to the restorable page cache
most of the time during the workload execution. The val-
ues are small in the beginning but this does not weaken
our claim because the periods are warming-up phases of the
workloads.

3. Core Ideas

3.1 Network Architecture of Cloud Data Centers

An important characteristic of data center networks that we
exploit is explained here. Figure 2 illustrates a simplified
view of the network architecture of a typical data center. The
main point is that storage nodes are connected with a desig-
nated SAN along with a general purpose network. For ex-
ample, CISCO suggests a data center networking architec-
ture that includes Storage Networking and Business Contin-
uance Networking [18]. Nodes might have another link for
management purposes. Descriptions of each network are as
follows:

Storage Area Network (SAN): It is used to communi-
cate with the storage nodes in the data center. A shared file
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Fig. 2 Network architecture of a data center. Storage nodes and comput-
ing nodes have designated networks: SAN and GPN.

Fig. 3 How Live Migration is Accelerated by Our Proposal. The SAN
and the GPN can be used in parallel because restorable page cache can be
transferred via both links.

system is built on top of this link and IO requests and data
from/to the storage nodes go through this link.

General Purpose Network (GPN): It is used to deal
with any network packets other than storage-related ones.
For example, HTTP requests sent from the Internet or sent
between services running in the data center go through this
link.

3.2 Parallel Transfer of Page Cache

The first core idea of this paper is that restorable page cache
can be fetched both via the GPN and the SAN because the
same data resides both in the VM memory and the disk
image. Therefore, transferring a memory page contain-
ing restorable page cache via the SAN can be parallelized
with transferring another memory page containing restora-
ble page cache or any other data via the GPN. This greatly
reduces the total migration time of a migration since the
available network bandwidth for the migration doubles in
the best case.

Figure 3 shows how live migration is accelerated by
our proposal. The source and the destination hosts are con-
nected by the GPN (general purpose network), and the stor-
age node is connected with them by the SAN. The rectan-
gles in the VM memory and the disk image indicate memory
pages and disk blocks. The black one contained only in the

VM memory is a normal data page. The gray ones contained
both in the VM memory and the disk image are restorable
page cache pages. In the figure, transferring the normal data
page and transferring a restorable page cache page is par-
allelized as the gray rectangles can be fetched both via the
GPN and the SAN.

3.3 Adaptive Transfer of Page Cache

The second core idea of this paper is adaptive transfer of
page cache to adapt to the highly dynamic characteristics of
cloud data centers. For each memory page containing re-
storable page cache, which network link (SAN or GPN) to
use to transfer it must be determined adaptively. This means
that, let R (0 ≤ R ≤ 1) be a ratio of restorable page cache
transferred via the SAN against the total size of the restora-
ble page cache, finding the best R a-priori to a migration is
infeasible because of two issues:

1. Available network bandwidths for migration are unpre-
dictable and dynamically changing. This means that
a-priori-determined R can be no longer the best when
the available network bandwidths change. For exam-
ple, the SAN can suddenly be congested after 50% of
memory transfer of a migration has finished.

2. Reading page cache from the disks of the storage
nodes, rather than transferring it via the networks, can
be the bottleneck in some cases. In this case predict-
ing disk read throughput is required to find the best R,
which is infeasible for real workloads. We will show a
real example where disk read throughput is the bottle-
neck in the evaluation.

In order to mitigate this issue, our adaptive page cache
transfer technique achieves the shortest total migration time
without determining R a-priori to a migration by automat-
ically transfers a portion of restorable page cache via the
SAN. The technical details of the method is described in de-
tail in Sect. 5.3.

Adaptive page cache transfer allows cloud providers to
adjust the interference to the SAN from migration traffic,
for example in order not to violate their SLAs. More con-
cretely, cloud providers can throttle the throughput of page
cache transfer via the SAN to an arbitary value to keep the
interference within a desired amount, because our mecha-
nism adapts to the available network bandwidth at runtime.
However the reduction ratio of total migration time by our
mechanims is also limited when the available SAN band-
width for migration is adjusted.

4. Proposed System

4.1 Design Overview

We propose an advanced memory transfer mechanism that
exploits our core ideas. The design criteria of the system
are:

1. Performance interference of the system must be small
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Fig. 4 Meta data to realize our method

because dynamic VM placement is a background oper-
ation from which users of the VMs do not want to be
affected.

2. Implementation must be easy with little dependency to
the guest OS because types of guest OS in a cloud has
a large variety.

3. The system must have no special assumption/
modification to the storage nodes, because in a data
center a storage node is not necessarily a server but can
be an integrated solution (e.g. NetApp).

The design criteria lead to our system components.
Small performance interference and implementation easi-
ness are achieved by using a kernel module inside the guest
OS to locate the restorable page cache within the memory.
No special assumption to the storage nodes requires the sys-
tem to be transparent from the underlying shared file system
and the network protocol of the SAN.

4.2 Migration Procedure with Our Mechanism

The procedure of a live migration with parallel and adaptive
page cache transfer is described in this section. The meta
data other than the actual memory content to implement the
procedure is illustrated in Fig. 4.

1. The source VMM receives a request to execute a mi-
gration. The requests is passed to our kernel module
installed inside the guest OS with the help of a small
user-space broker program ((1) in Fig. 4).

2. The kernel module detects the page frame numbers
(PFNs) of restorable page cache and the identical disk
blocks ((2) in Fig. 4). They are sent to the source and
the destination VMMs with the help of the user-space
program ((3) in Fig. 4).

3. The memory transfers are kicked-off. Memory pages
are transferred using the SAN and the GPN in parallel.

a. The destination VMM fetches memory pages con-
taining restorable page cache from the storage
node via the SAN.

b. The source VMM sends memory pages contain-
ing normal data via the GPN. Once the number
of normal data pages to be transferred becomes
sufficiently small, the source VMM starts sending
restorable page cache via the GPN.

4. Memory pages updated during above steps are trans-
ferred again via the GPN to guarantee the memory con-
sistency.

5. Once the amount of remaining memory becomes suffi-
ciently small and all the restorable page cache is trans-
ferred, the execution host of the VM is switched.

Note that the procedure 4 is done after the procedure
3 finishes but not in parallel with it. Therefore, the utiliza-
tion of the two network links is not perfectly balanced if the
VM aggressively updates its memory pages. This choice
stems from a well-known fact that updated memory pages
are highly possible to be re-updated in near future, thus im-
mediately retransmitting updated memory pages can incur
repeated retransimission [19]. However, parallelizing the
procedure 3 and procedure 4 is straight-forward, because
sending restorable page cache via the GPN (procedure 3-
b) can be preempted anytime to give priority to retransmit-
ting updated memory pages (procedure 4). Our algorithm
automatically adopts to the change of transfer throughpout
of restorable page cache via each network link (details in
Sect. 5.3).

5. Technical Challenges and Approaches

The technical details of this paper is described in this sec-
tion. Realizing our system is involved in three technical
challenges and each of them is described in detail.

5.1 Memory Consistency

Memory pages containing restorable page cache can be up-
dated during a migration and turn into non-restorable. In this
case, the latest data of the page must be transferred via the
GPN (general purpose network) because there is no guar-
antee that the updated data is flushed into the disk and ac-
cessible via the SAN. The are two scenarios that incur this
situation: (1) a write operation to the cache occurs, or (2) the
guest OS re-allocates the memory page for non-page cache
purpose due to a memory pressure.

We solve this issue with the dirty page tracking func-
tionality of the VMM. The x86 architecture has a dirty bit
for each memory page that is set when the page is updated.
The VMM provides a functionality to read the dirty bits
from the software level. Dirty page tracking is enabled at
the source host when a migration starts and all the memory
writes after that are tracked. A memory page updated during
the tracking is transferred via the general purpose network,
even if the memory page was restorable when the kernel
module detected restorable page cache.

5.2 Memory Writing Algorithm

The memory writing algorithm on the destination side must
be carefully designed. This is because a memory page at the
destination host can be written by two threads, one holding
the latest data transferred from the GPN and another holding
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an obsolete data transferred from the SAN (see Sect. 5.1 for
the reason why this happens).

The VMM in the destination host has a received flag
and a mutex for each memory page. Both the two threads
try to acquire the lock before writing to a memory page to
achieve an atomic write. However, a lock confliction does
not mean the same to the two threads: When a lock conflic-
tion occurs, the thread holding the latest data always have to
wait for the lock to be released and then overwrite the lat-
est data to the memory page. On the other hand, the thread
holding an obsolete data just discards the data because it is
obsolete. Note that we introduce a small buffer in order not
to block the thread executions on a lock confliction. The
buffer includes the latest data for a small number of mem-
ory pages. When a lock cannot be acquired for a memory
page, the thread can try acquiring the lock for the next page
in the buffer, instead of being blocked.

The memory- and performance- overhead due to the
locking is enough small. A flag is 1 byte and a mutex is
40 bytes (in Linux pthread implementation) thus the sum
of them is 4% of the size of a memory page. The important
notice is that the flags and mutex are no longer required after
a migration thus there is no extra memory required during
non-migration time. We confirmed that the number of lock
confliction can be negligibly small by setting the size of the
buffer 32, which consumes merely 128 KB (4 KB/page × 32
pages) of memory.

5.3 Adaptive Page Cache Transfer

The adaptive page cache transfer mechanism automatically
determines which network link (SAN or GPN) to use for
each memory page containing restorable page cache. This
mechanism is highly important because determining the
amount of transferred page cache via each link prior to a
migration results in network load imbalance, and thus non-
optimal total migration time, due to the dynamic charac-
teristics of cloud data centers (the details are described in
Sect. 3.3).

The fundamental issue is that memory pages are
“pushed” from the source host to the destination host be-
cause only the source host knows which memory pages are
updated during live migration, while the disk blocks are
“pulled” by the destination host from the storage nodes be-
cause the design criteria (3) allows no modification to the
storage nodes. This means that the source and the destina-
tion hosts have to independently decide which link to use
for a given memory page.

We solve this issue by our reverse ordered transferring
algorithm:

1. Preparation: The VMMs in the source and the destina-
tion hosts have pairs of PFNs and disk block numbers
{Pi, Di} (1 ≤ i ≤ n). Memory page Pi contains the same
data as the disk block Di does, and n is the number of
memory pages that contain restorable page cache. The
pairs are sorted in the order of Di.

2. Parallel transfer phase: The two network links are as-
signed the pairs to transfer in reversed orders. Memory
transfer via the GPN is done in the descending order
of Di, while disk block transfer via the SAN is done in
the ascending order of Di. Because the two transfers
are done in reversed orders of Di, they do not overlap
until all restorable page cache has been transferred.

3. End of transfer phase: The parallel transfers reach
to the same pair {Ps, Ds}, meaning that all restorable
page cache has been transferred. The destination host
can detect this point by the received flag (described in
Sect. 5.2). It skips pulling the disk blocks Di (i > s),
and notifies the source host of the end the transfers.

6. Implementation

6.1 Detecting Restorable Page Cache

Our kernel module detects the PFNs of the memory pages
containing restorable page cache and the block numbers of
the identical disk blocks to the restorable page cache. It
utilizes OS dependent kernel functions and data structures
to easily detect them. Our current implementation requires
Linux guest, but we believe it is easy to implement it for
other guest OS (Windows provides similar kernel functions
to the ones we use in Linux). The size of the module is
155 KB only and it takes less than a second to detect re-
storable page cache from 1 GB of memory and 20 GB of
disk.

The use of kernel functions and data structures greatly
reduces the implementation cost to detect restorable page
cache. In Linux, pfn_to_page kernel function takes an in-
teger as the input and returns struct page kernel data of
a memory page whose PFN is the input integer. If the page
contains page cache, the struct page includes a flag indi-
cating whether the page is flushed back to the disk, which
means this page is restorable. The disk block number that
has the identical data to the page is retrieved by passing the
struct page to another function bmap.

Installing an extra kernel module and a broker program
might not be acceptable for users with strict security poli-
cies. In this case, our system can simply fall back to normal
live migration without any special mechanism. The VMMs
can detect that there is no broker program inside the VM
from a failure of connection establishment in the migration
procedure (1) described in Sect. 4.2. Once a connection fail-
ure is detected, the VMMs can regard the amount of re-
storable page cache to be zero and this automatically makes
our mechanism transfer all the memory pages via the GPN,
which is exactly the same as normal live migration.

6.2 Modified VMM

Our modified version of QEMU/KVM has two unique steps
compared the vanilla one. First, they retrieve the PFNs (page
frame numbers) of restorable page cache and the identical
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disk block numbers from the migrated VM. As described
in Sect. 6.1, locating the restorable page cache uses our ker-
nel module installed inside the VM. Because a kernel mod-
ule cannot send data itself, we use a user-space broker pro-
gram to pass the data, retrieved by an ioctl call to the
kernel module, to the VMMs. We simply use TCP/IP for
the data transfer between the user-space program and the
VMMs. The size of the transferred data is 8 MB when the
VM memory size is 4 GB (4 byte for PFN + 4 byte for disk
block number) ×(4 GB ÷ 4 KB/page). While using TCP/IP
largely simplifies the implementation, it has a performance
disadvantage compared to using more sophisticated method
(described in Sect. 8.2).

Second, the VMM in the destination host invokes two
threads, receiving thread and restoring thread, for the par-
allel transfers. The receiving thread receives normal mem-
ory pages via the general purpose network, and the restor-
ing thread copies restorable page cache via the SAN. The
implementation of the restoring thread is straight forward:
it uses normal read/write system calls to fetch the restorable
page cache and does not require any change to the underly-
ing network settings/storage nodes. Normal read/write calls
are automatically dispatched to the SAN by the underlying
file system because disk images are on a shared file system
(such as NFS, ATAoE, and iSCSI) as normally done in cloud
data centers.

7. Evaluation

7.1 Methodology

Our evaluation consists of two parts and the metric each part
measures is as follows:

1. Total migration time under various workloads, with all
our proposals enabled.

2. Total migration time under various workloads, without
the adaptive page cache transfer but with a pre-defined
parameter R that specifies how much portion of restora-
ble page cache is transferred via the SAN.

The first part shows that our proposal successfully shortens
total migration time. The second part shows that the adap-
tive page cache transfer automatically yields the optimal re-
sults by comparing with manually tuned cases.

The evaluations environments are shown in Table 1.
The physical hosts have three 1 Gbps network interface

Table 1 Evaluation environments

Host Guest

CPU Intel Xeon X5460 1 core vCPU

Memory 8 GB 3 GB

Storage 256 GB HDD 20 GB

(read: 90 MB/s) (raw disk image)

Network 1 Gbps NIC × 3 1 Gbps vNIC (bridged)

OS Debian GNU/Linux 6.0.5 (Linux 2.6.32)

VMM QEMU 0.13.0, KVM 2.6.32

cards (NICs), two of which are used for the SAN and the
GPN. The read throughput of the storage devices are mea-
sured using bonnie++ in the host OSes. The VMM is com-
posed of QEMU 0.13.0 and KVM 2.6.32. The KVM is the
default version of the host OS. Each measurement uses three
servers: two computing nodes and a storage node shared
across the cluster via Network File System (NFS). A VM
running a workload is migrated from a computing node to
another computing node. The disk image of the VM is
stored in the storage node. The read/write block size of NFS
is tuned to 8 KB because it achieved the best result†.

The evaluation is conducted with three workloads:
WebServer, TPC-C and Postmark.

WebServer simulates a web server under high load.
Apache web server has static files. The number of files is
10,000 and the size of each file is 300 KB. A load gener-
ator, httperf, fetches the files with the speed of 50 files/s.
Therefore the page cache is read with 15MB/s and no write
occurs to it (since the files are static). Read from the storage
node occurs only once at the beginning. The load generator
runs on a designated host (not the same neither as source nor
destination) and accesses the files via the third NIC to avoid
interference to the migration process. The migration is exe-
cuted 250 seconds after the workload started, where all the
files has been cached in the page cache.

Postmark [20] is a benchmark that measures IO per-
formance of small and short-lived files to simulate load of
mail, net news, or web servers. A survey on file system
benchmarking tools [21] reports that Postmark is the third
most popular in research during 2009–2010. We set up the
parameters of Postmark as follows: repeat 80,000 transac-
tions in the speed of at most 500 per second with 1MB–
5MB files and 4KB of read/write buffers. In our VM the
workload achieved reading data with 154.56 MB/s and writ-
ing with 155.31 MB/s during the execution, not including
the warming up time. Please note that this does not mean
the amount of unique bytes read or written, and actual per-
centage of restorable page cache within the memory at each
time point is shown in Fig. 1.

TPC-C [22] is a benchmark that measures the perfor-
mance of a database system. It generates database access
patterns that simulates an online shopping web site. It has 5
types of transcations (new-order, payment, delivery, order-
status, and stock-level) and the detailed database schema
is in page 9 of an official document [23]. We used the de-
fault mixture ratio of the 5 types (45%, 43%, 4%, 4%, and
4% respectively) and the warehouse parameter is set to 20,
which gives the total data size of 1.9 GB. In our VM the
benchmark achieved 129.7 tpmc (transcations per minute)
in average, not including the warming up time. The offi-
cial document [23] shows in page 16 that 1 tpmc typically
generats 0.5 physical IOs/sec to the disks. Therefore 129.7
TpmC generates 64.85 IOs/sec, which is a moderately high
IO load for an HDD. The migration is executed 270 seconds
after the the workload started, where the warming up phase

†In our previous paper [1], the block size was 4KB.
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of TPC-C has been finished.

7.2 Total Migration Time with Adaptive Page Cache
Transfer

Figure 5 (a), 5 (b) and 5 (c) show total migration time under
WebServer, Postmark, and TPC-C workloads, respectively.
The light-colored bars indicated “original” are the results
with un-modified live migration implemented in QEMU
0.13.0, and the dark-colored bars indicated “proposed” are
the results with our proposal. Each value is calculated by
averaging over 10 runs.

The reduction ratios of the total migration time against
the original QEMU are 33.9% under Postmark workload,
20.3% under WebServer workload, and 13.3% under TPC-
C workload. These results show that our proposal efficiently
reduces the total migration time under various IO-intensive
workloads.

There are large difference between the reduction ratios
depending on each workload. The difference stems from
characteristics of IO-operations in each workload. The de-
tails are discussed in Sect. 8.4.

7.3 Experiments w/o Adaptive Page Cache Transfer

To confirm that our adaptive page cache transfer mecha-
nism achieves the optimal result, the total migration time in
Sect. 7.2 are compared with manually tuned results without
using the adaptive page cache transfer. The adaptive page
cache mechanism is turned off and a pre-defined parameter
R is given. R represents the ratio of restorable page cache
transferred via the SAN to all the restorable page cache.
That is, R = 0.6 means that 60% of the restorable page
cache is transferred via the SAN and 40% is transferred via
the GPN.

The left-side graphs of Fig. 6, Fig. 7, and Fig. 8 show
the total migration time without the adaptive page cache
transfer under WebServer, Postmark, and TPC-C workloads,
respectively. The x-axis of each figure shows a value of R
and the y-axis shows the total migration time for the R. Note
that total migration time with R = 0 are not the same as the
“original” in Sect. 7.2, because the values with R = 0 in-
clude overhead of retrieving the locations of restorable page
cache (further discussion in Sect. 8.2). For all workloads,
the shortest total migration time achieved in this experiment
matches the one in Sect. 7.2. This means our adaptive page

Fig. 5 Total migration time with and without our proposal under (a)
WebServer (b) Postmark (c) TPC-C workloads.

cache transfer mechanism achieves the optimal result with-
out manually tuning R.

The graphs in the middle of Fig. 6, Fig. 7, and Fig. 8
show the elapsed time consumed by Receiving Thread and
Restoring Thread. Receiving thread is a thread in the desti-
nation host that receives memory pages sent from the source
host, and Restoring thread is another thread in the destina-
tion host that fetches restorable page cache from the storage
node. The x-axis shows a value of R and the y-axis shows
the elapsed time of each thread for the R. For all workloads,
the shortest total migration time is achieved when two bars
have almost the same lengths. This means that the total mi-
gration time is the shortest when the SAN and the GPN are
both utilized throughout the migration.

The right-side graphs of Fig. 6, Fig. 7, and Fig. 8 show
the amount of data transferred by each thread. An inter-
esting point is that the trend is not necessarily the same as
the trend in the elapsed time of each thread. In Fig. 8, the
elapsed time by the two threads are almost the same at R =
0.4 (where the shortest total migration time is achieved), but
the amount of data transferred by the two threads are largely
different at R = 0.4. This is because the bottleneck is the
throughput of the HDD in the storage node, but not the net-
works. Thanks to the adaptive page cache transfer mech-
anism, our proposal can automatically achieve the shortest
total migration time even though the bottleneck is located in
different places depending on each case.

8. Discussion

8.1 IO Performance Improvement

To estimate the IO performance improvement by our mech-
anism compared to the existing mechanisms focusing on
page cache (that is, dropping page cache before a migration
for acceleration), we measured IO performance of a migrat-
ing VM with File Read workload. The workload repeatedly
reads a large file and reports the throughput every 1 second.
The size of the file is 2 GB and the memory size of the VM is
3 GB (the same as Table 1), thus the whole file is cached in
the page cache after it is read once. We show that actual IO
performance overhead with our mechanism is smaller than
a lower bound estimation with the existing mechanisms, be-
cause no exsiting work provides the implementation.

Figure 9 shows the IO performance of File Read work-
load before, during, and after a migration with our mecha-
nism. The x-asix shows the elapsed time, the y-asix on the
left shows the actual throughput in blocks/s (solid line), and
the y-asix on the right shows the accumulated lost through-
put due to the migration overhead in blocks (dashed line).
A block is 4 K bytes. The accumulated lost throughput at
each x shows the total number of blocks that cannot be read
by time x due to the migration overhead. Before the migra-
tion, the VM can read the file with its maximum throughput,
which is around 108K blocks/s and we refer this value as M.
During the migration, the throughput degrades due to the
CPU and memory overhead incurred by the migration itself.
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Fig. 6 Total migartion time, elapsed time and transferred data by the two communication threads in
WebServer Workload.

Fig. 7 Total migartion time, elapsed time and transferred data by the two communication threads in
Postmark Workload.

Fig. 8 Total migartion time, elapsed time and transferred data by the two communication threads in
TPC-C Workload.

Fig. 9 Read throughput and accumulated lost throughpout of a file in-
side a VM before, during, and after a migration with our machanism. The
throughput recovers to the max in 2 seconds after the migration. The accu-
mulated lost throughput due to the migration overhead is 490 K blocks.

The migration finishes at x = 22 and the read throughput
recovers to its maximum quickly (in 2 seconds at x = 24),
thanks to the page cache transferred by our mechanism.

The accumulated lost throughput shows the total IO
performance degradation through a migration. The value is
around 490 K blocks in our mechanism. A lower bound
of the accumulated lost throughput in the existing mech-
anisms is estimated as in Fig. 10. We first assume that
dropping page cache makes total migration time to be zero,

thus accumulated lost throughput during a migration is also
zero. Note that this assumption does not break the lower-
bound-ness of the estimation. We also assume that the file
can be re-loaded from a disk without any bottleneck in the
existing work. Then, the accumulated lost throughput is
T × (M − m), where T and m are the time took and the
throughput achieved to re-load the file from a disk. Ta-
ble 1 shows the sequential read throughput of our HDD is
90MB/s, thus m ≈ 23 K blocks/s and T ≈ 22 sec. From these
value we can get a lower bound: 22 × (108 − 23) = 1870 K
blocks. This is 3.8 × larger than 490 K blocks and di-
viding the difference by M shows extra time the work-
load takes when migrated with the existing mechanisms:
(1870 − 490) ÷ 108 ≈ 12.8 seconds. Therefore we con-
clude that our mechanism improves the performance of File
Read workload under a migration compared to the existing
work. Because File Read is the most page-cache-access-
intensive workload, the same applies to other workloads
used in Sect. 7 as well.

8.2 Using TCP/IP for VMM/Broker Communication

Transferring PFNs of restorable page cache and disk block
numbers with TCP/IP is the easiest method and applicable
to any practical guest OS, but has overhead on total migra-
tion time. In the WebServer benchmark, the transfer takes 3
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Fig. 10 Lower bound estimation of accumulated lost throughpout of a
file inside a VM with existing mechanisms (dropping page cache before a
migration). The read throughput degrades from M to m for T seconds after
a migration, due to the loss of whole page cache. We assume the migration
takes zero time, as no real implementation is available and this assumption
does not break lower-bound-ness of the estimation.

Table 2 Comparison of methods to detect restorable page cache

Kernel VM Intro- IO Moni-

Module spection toring

Implementation Easy Hard Middle

Runtime Overhead None None Small

Guest OS Module Specific None

Limitation Installed Version

seconds even though the size of data to transfer is just 6 MB.
This is because the web sever inside the VM arises many in-
terruptions to the network interface and the broker program
cannot use the network functionalities efficiently. Without
the web server, it takes less than 1 second to send the PFNs
and disk block numbers even if the vCPU usage is 100%.
The overhead was 1.6 seconds for Postmark workload and
1.2 seconds for TPC-C workload.

Mechanisms that do not use network to for communi-
cations between a host and a VM can be alternatives. Exam-
ples are Symbiotic Virtualization [24] and the shared mem-
ory space used in [6], although they require much imple-
mentation cost.

8.3 Page Cache Detection w/o Kernel Module

Installing a kernel module into the guest OS is the most
feasible method to detect restorable page cache, although
it is not the only one. The alternatives are VM introspec-
tion techniques and monitoring IO operations to/from the
storage. VM introspection (e.g. [25]) allows the host OS to
understand the memory content of a VM running on it. The
host OS requires no help of the guest OS, but the guest OS
kernel must be a specific version that the host OS expects.

IO monitoring in [8] captures all IO operations between
the guest OS and external storage. The method is imple-
mented in the layer of VMM and emulated hardware thus it
required no modification to the guest OS. However, it incurs
small overhead while the VM is executed because of the IO
capturing.

Table 2 shows comparison between our method (kernel

Table 3 Average cluster size of restorable page cache.

Workload Average Cluster Size

WebServer 57.1

Postmark 124.3

TPC-C 18.9

module), VM introspection, and IO monitoring. The best
characteristics among each row are shown italic. Kernel
module is the easiest to implement among three methods be-
cause the guest kernel knows everything about the guest OS
thus the module has only 200 lines of code in C (error han-
dling excluded). Runtime overhead means the overhead in-
curred by each method to the VM performance during non-
migration time. The kernel module incurs literary no run-
time overhead because the module is invoked just before a
migration and it even does not need to be loaded into the ker-
nel during non-migration time. This characteristic is highly
important as described in the design criteria (Sect. 4.1).

The dependency of our kernel module on kernel func-
tionalities is sufficiently small to support wide range of
OSes/kernel versions. The module assumes that the in-
kernel data for memory page management can be retrieved
from a page frame number (with pfn to page in our imple-
mentation), and the disk block containing the same data as
a memory page can be found directly from the kernel data
(with bmap in our implementation). These functionalities
are fundamental for the page cache mechanism itself, be-
cause flushing data cached in a memory page requires the
location of the disk block into which the page is written.
Therefore they are highly possible to be supported in fu-
ture versions of Linux and other OSes as long as the page
cache mechanism exists. Interface changes (e.g. function
name, numbers/types of arguments) can occur more easily,
but adopting the module to this type of changes is not diffi-
cult because the module has only 200 lines of code in C.

8.4 Block Sequentiality

The total migration time in our method is largely affected
by the sequentiality of disk blocks that contain restorable
page cache. This is because random accessing to an HDD
is much slower than sequential accessing. Therefore, when
disk blocks to transfer are scattered across wide address
range of the HDD, read throughput of the storage node be-
comes the bottleneck instead of the networks.

Table 3 shows sequentiality of disk blocks to transfer
in the workloads used in the evaluation. For each workload,
we calculated average cluster size of restorable page cache
for the workload. A cluster means a set of sequential disk
blocks within the disk blocks to transfer. For example, if
the disk blocks to transfer are {1, 2, 55, 56, 100,101,102},
the average cluster size is 2+2+3

3 ≈ 2.3. Larger cluster size
results in better read throughput of the blocks. The results
show that the average cluster size is the smallest in TPC-C
workload and relatively the large in WebServer and Post-
mark workloads. These values obviously show why the re-
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duction ratio of total migration time is not large under TPC-
C workload. It can be expected that database-related work-
loads have small average cluster size in general and our pro-
posal does not work efficiently for those workloads.

9. Related Work

Some studies force the guest OS to delete the page cache
to accelerate live migration. Koto et al. discuss computa-
tional and time costs of live migration (referred as migration
noise) in [6]. They reduce the migration noise by skipping
the transfer of restorable pages including page cache, free
pages, and kernel objects reconstrucable from other data.
This method degrades IO performance of the VM due to
the loss of page cache after a migration. Hines et al. also
skips the transfer of page cache by using the balloon driver
of Xen [7]. In a paravirtualization environment with Xen,
a guest OS returns unused memory pages to the Xen using
the balloon driver. Hence, Xen can skip the transfer of the
deleted page cache in a live migration. This method also
degrades the IO performance of the VM after a migration.

Transferring page cache from storage to achieve fast
live migration without deleting the cache has been pro-
posed [8], [9]. The main advantage of our work is that we
proposed the adaptive page cache transfer. Existing stud-
ies do transfer restorable page cache via the SAN in parallel
with normal data transfer via the GPN, but they use the GPN
exclusively for normal data. To mitigate the load imbalance
between the SAN and the GPN, [9] introduces lazy fetch
mechanism, whose core idea is similar to well-known post-
copy live migration. The lazy fetch mechanism switches
the execution host of the VM as soon as transferring nor-
mal data is finished. After the execution host of the VM is
switched, the remaining restorable page cache is fetched on
demand in response to the memory accesses at the destina-
tion host. This mechanism has the same problem as post-
copy live migration has: accesses to the page cache which
is not transferred yet takes long time and degrades the over-
all performance of the workload running in the VM. Our
adaptive page cache transfer mechanism mitigates the load
unbalance without penalizing the IO performance thus more
suitable for IO-intensive VMs than existing work.

There are many existing studies on live migration, but
our technique is complementary with most of them. This is
because our technique and many live migration researches
optimize different phases of live migration as described in
Sect. 2.2. For example, Svärd et al. decrease the amount
of transferred data by transferring only the difference of a
memory page and its previous version when the memory
page is updated. This technique does nothing on the first
phase of live migration, thus it can be combined easily with
our system.

10. Conclusion

VMs running IO-intensive workloads suffer from long to-
tal migration time due to a large amount of page cache in

its memory. Existing studies either force the guest OS to
drop page cache (with great penalty to the application per-
formance), or do not consider the dynamic characteristics of
cloud data centers. We propose a parallel and adaptive page
cache transfer mechanism to mitigate this problem, and our
system shortens total migration time by up to 33.9% fast
without forcing the guest OS to delete page cache nor man-
ually tuning any parameters.
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