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Abstract—As the financial size and impact of the video game
industry grows, so does the impact of cheating in video games. For
example, cheating in online multiplayer games could affect the
fairness of their championships, which award tens of thousands
of USD. A unique challenge in cheat detection for video games
is that the owner of the system (on which the games run)
are the adversaries, thus they have full control over the entire
system. To achieve cheat detection against such adversaries, we
propose a novel cheat detection system based on host memory
monitoring from GPU. It monitors the value of protected objects
and compares them with pre-loaded metadata, and detects cheats
when they do not agree with each other. By monitoring the host
memory by a GPU program that cannot be intercepted once
invoked, it achieves resiliency against a cheater who has a kernel-
level privilege of the system. Our evaluation shows that it can
successfully find two types of cheats and that it is robust to a
cheater’s attempt to overwrite the metadata.

Index Terms—Cheat detection, Memory-monitoring, Game
security

I. INTRODUCTION

The financial size and impact of the video game industry
have been growing rapidly. Examples include the sales of
Nintendo as a whole and Sony’s game segment, which have
grown by 78% and 352% in recent 10 years, respectively. As
the financial impact of video games grows, so does the impact
of cheating especially in online multiplayer games. Cheating in
these games hurts the user experience of innocent players who
would eventually stop buying them and negatively impacts the
revenue of game developers. Cheating also reduces the fairness
of championships of online multiplayer games that award tens
of thousands of USD.

A unique challenge in cheat detection for video games is
that the admin user (a.k.a. root user) of the system running the
game is the adversary. It is different from many other security
problems where the root user tries to prevent a malicious
adversary (e.g., malware) from penetrating the security. This
fact mandates a unique threat model, i.e., the adversary has
kernel-level privilege and can use that privilege to prevent
cheat detection systems from doing their jobs. For example, a
video game player using Windows can use the task manager
to freely stop cheat detection systems.

Although the adversary (person who cheats) has kernel-level
privilege, a cheat detection system might not have the same
privilege because installing such a system with high privilege
has two concerns. First, it can be compromised by malware
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so that the privilege is abused. Indeed, a cheat detection
system bundled with a famous video game was reported to be
compromised to bypass anti-virus software. Second, the ability
to monitor everything in the system raises privacy concerns.
For example, a Windows driver that is supposed to be detecting
cheats can instead be monitoring the communication between
the PC and servers that are not relevant to the game itself.

To achieve cheat detection against such an adversary without
leveraging a kernel-level privilege, we propose a novel cheat
detection system based on host memory monitoring from GPU.
The main idea is to utilize a GPU (not a CPU) to check the
integrity of objects inside the host memory by comparing them
with metadata registered at the allocation time. This makes
our system robust against our adversaries because (1) a GPU
program that is already running cannot be stopped (unless
rebooting the entire machine or killing the host-side process
that has launched it) even by such users, and (2) the metadata
is copied to the GPU memory as soon as it is created to
protect it from being overwritten. We implement a prototype
of our system and show that it can detect when a protected
value becomes out of the predefined range, and also when the
value changes more rapidly than the predefined rate. We also
evaluate the overhead and the resiliency of our system against
a cheater who overwrites the metadata as fast as possible.

II. BACKGROUND

A. Cheating in Video Games

The video game industry has been financially growing
rapidly both in its size and impact. In the traditional gaming
area, the net sales of Nintendo have grown from $6.76 million
in 2013 [1] to $12.04 million in 2023 [2]. Similarly, the
sales of the gaming segment of Sony have grown from 805.0
million JPY in 2012 [3] to 3,644.6 million JPY in 2022 [4].
Also in the competitive gaming area (or e-sports), multiple
championships award tens of thousands of dollars [5] or even
millions of dollars [6], and the top-notch players earn hundreds
of thousands of dollars from these awards [7].

Cheating in video games has three major impact especially
in online multiplayer games.

1) User experience: when one player cheats, the other
players would have bad feelings by either observing it or
being beaten in the game regardless of their best effort.
This could in turn reduce the sales of the game because
these innocent players might no longer want to play.



TABLE I
CHEATING CATEGORIZED BY THE MEASURES

Cheat Type Measure User burden Target
User-level Software (Process) Small

Kernel-level Software (Driver) Moderate ✓
Device-level Hardware (DMA) Very Large

2) Fairness: championships of some online multiplayer
games today often award tons of money and some
players base their lives on these awards. Thus, reducing
the fairness of championships with cheating could even
hurt the real lives of the participants. Because of the
huge impact, game developers are now serious about
finding and preventing cheating in their championships.
For example, Riot Games banned a team from its
championships after a member of that team cheated [8].

3) Real money trade (RMT): cheaters make money by
selling rare items or highly grown-up characters acquired
by the use of cheating tools. RMT not only hurts the user
experience of innocent players but encourages them to
also join it because it is sometimes way easier to buy a
rare item than actually acquire it with a legitimate play.

B. Target Cheat Types for Detection

In this paper, we set kernel-level memory editing cheats as
the target for detection. This section explains what they are
and how they are implemented in detail.

A memory editing cheat is a user’s activity to illegitimately
modify objects in the heap of the game process with the help
of some software or hardware tool. For example, a user could
overwrite the attack parameter contained in an enemy object
to -1. This results in a hit by the enemy healing (in stead of
damaging) the user’s character, which illegitimately helps the
user clearing the game with little effort.

Memory editing cheats can be implemented in various ways
as shown in Table I.

1) User-level: A user-level process is used. In Windows, a
process can be given the Debug Privilege that enables
it to affect other processes in a variety of ways. This
includes reading from and writing to their memory con-
tents or creating new threads in their contexts. Because
a cheater often has full control over the system on which
games run, they can easily grant the Debug Privilege to
a cheating process.

2) Kernel-level: A kernel-level driver is used. The word
kernel refers to OS kernels but not GPU kernels through-
out the paper, unless otherwise specified. Because a
driver runs in the highest privilege level, it can easily
read from and write to the memory content of game
processes. Even worse, nothing can prevent a cheating
driver from being installed because the cheater has full
control of the system.

3) Device-level: A physical device is used. A device at-
tached to a PCIe slot reads from and writes to physical
memory directly through Direct Memory Access.

The reason why we target the kernel-level cheats is that it
is hard to prevent but still easy to conduct. User-level cheats
are easier to prevent than kernel-level cheats because they are
conducted by user-level processes. Device-level cheats are the
most powerful in terms of the stealthiness, while the hurdle
for introducing them is quite high. Kernel-level cheats are as
easy to install as user-level cheats, and they are harder to block
because of the high privilege level.

C. Challenges in Mitigating Kernel-level Cheats

Detecting and preventing the cheats that we target in this
paper is challenging in two aspects. First, anti-cheat tools that
work in the user-level cannot prevent them by principle. Here,
an anti-cheat tool is software that is either installed separately
or bundled with video games and investigates if a player is
cheating. Because a user-level anti-cheat tool is only granted
a user-level privilege, a cheater that leverages a kernel-level
driver can easily control (e.g., terminate) the anti-cheat tool.

Second, kernel-level anti-cheat tools (e.g., Vanguard
adopted by a popular game named Valorant) have two major
concerns due to their high privilege even though they are
powerful enough to find the target cheats.

1) Increased attack surface: These tools are targeted
by malware because of their high privilege level. For
example, the anti-cheat tool of Genshin Impact was com-
promised to terminate antivirus software on the system
so that malware can be freely executed afterward [9].

2) Privacy concern: They can monitor everything that
happens in the user-space and can send the monitored
information to the Internet. This along with the fact that
the source code of anti-cheat tools are disclosed has
raised privacy concerns [10], [11].

III. RELATED WORK

A powerful countermeasure against cheating is Trusted Exe-
cution Environments (TEEs), where even the OS is not granted
accesses to the memory of protected processes. BlackMir-
ror [12] proposes a new game design to utilize Intel SGX for
preventing wallhacks. TZMon [13] utilizes ARM TrustZone to
protect mobile games, as well as to securely update the games
and synchronize clocks. Although very powerful, a drawback
of TEEs is that they require games to be specifically coded
to use them. On the other hand, protecting objects with our
system only requires replacing memory allocation code and
nothing else needs to be changed.

Monitoring host memory from a GPU is proposed for
health-checking the host OS. GPUSentinel [14] monitors the
memory of the host OS from a GPU to detect kernel-level
faults such as infinite loops with interrupts disabled. GPU-
fas [15] overwrites the memory content of the host OS to
recover from such faults. Our work differs from these systems
in its threat model and the system design. The root user and
the host OS in these systems are honest although faulty, while
the adversary is the root user themselves in our threat model.

Utilizing GPUs for security has been proposed in other
systems as well. Raspberry Pi leverages the integrated GPU



for booting by letting it execute the first stage bootloader [16],
[17]. This hinders reverse-engineering attempts on the boot-
loader because it is provided as an undocumented GPU
binary. PixelVault [18] achieves secure computation with an
assumption that even the OS is compromised. It hides secret
keys and critical code that uses the keys inside the registers
and cache of the GPU, allowing no read or write accesses
from the compromised host.

IV. PROPOSAL: CHEAT DETECTION BY GPU
A. Main Idea

To detect kernel-level memory editing cheats in video
games while addressing the challenges of existing methods, we
propose a system that does not require a kernel-level privilege
but still be resilient to interception from a cheater who has
a kernel-level privilege. Fig. 1 shows the overview of our
proposal. The main idea is to monitor the content of the host
memory from a GPU task to check the integrity of in-game
objects by comparing them against the metadata stored at the
allocation time. Note that a GPU task in this paper means a
GPU kernel in the well-established terminology, but we use
the word task to avoid confusion between a GPU kernel and
an OS kernel throughout this paper.

To make our system resilient to a cheater who has a kernel-
level privilege without granting ourselves the same privilege,
we leverage two characteristics of GPU tasks. We explain
characteristic (2) in detail later in Section IV-C.

1) GPU tasks can be invoked with a user-level privilege.
This allows us to not have a kernel-level privilege.

2) Even someone with a kernel-level privilege cannot stop a
currently running GPU task due to a lack of such APIs.
This makes our system not interceptable by a cheater
with a kernel-level privilege.

B. Threat Model and Target Cheats

We assume the following threat model. Please note that it
defines what we cover in this paper, and we are aware that it
does not represent every cheater or every system.

1) The cheater plays a video game that requires an NVIDIA
GPU for seamlessly playing it.

2) The cheater has full control of the computer on which
they play the target game in theory. However, in prac-
tice, the cheater does not have full knowledge nor mo-
tivation to enable themselves to do more than installing
off-the-shelf cheating tools.

3) The cheater conducts kernel-level cheating that modifies
objects inside the heap of the process of the target game.
The cheater does not conduct device-level cheating due
to a lack of knowledge and motivation.

4) The proposed system is properly invoked when the target
game starts its execution. This must be ensured with a
technique outside of this paper.

5) The program code (both as forms of executable files and
in-memory binaries) is protected from any overwriting
attempts by the cheater. This must also be ensured with
a technique outside of this paper.

Fig. 1. Overview of Our Proposal

Under this threat model, we assume that the cheater con-
ducts kernel-level memory editing cheats. In concrete, we
assume that a cheater modifies the memory content in the
following two ways.

1) Out-of-Range (OR): a value inside an object is over-
written with another value that is not supposed to appear
during a legitimate play. Examples include setting the
gravity to 0, resulting in a character floating all the time.

2) Too-Drastic (TD): a value inside an object is updated
at a rate that is not supposed to appear during a legiti-
mate play. Examples include updating the position of a
character from one edge of the map to another within
one frame.

Please note that these do not represent every cheat, but they are
what we cover in this paper. For example, we do not cover a
case where a kernel-level cheating tool overwrites the process
ID of the game process.

C. Continuity of GPU tasks

Our system invokes a GPU task that monitors the content
of the host memory. We explain how this design makes our
system resilient to a cheater who has a kernel-level privilege.

A GPU task cannot be stopped its execution once it has been
started unless the entire machine is shut down or rebooted, or
the host-side process that has launched the GPU task is termi-
nated. This is because the CUDA APIs provided by NVIDIA
do not support quitting a GPU task that is currently running.
Table II shows all the CUDA APIs categorized as Execution
Control [19]. Although there is cudaLaunchKernel and
cudaLaunchDevice that launch GPU tasks, no API that
stops a running GPU task exists.

Besides the APIs in Table II, the closest we are aware
of that might be able to stop a currently running GPU task
is cudaDeviceReset. The documentation [20] says that
it destroy all allocations and reset all state on the current
device in the current process. To confirm how it works,
we created a GPU task that printed a message at every
100,000,000th iteration of a loop. We used the <<< and
>>> syntax to invoke this GPU task, which is a high-level
syntax sugar for cudaLaunchDevice. Five seconds after
this task had been kicked off, we called cudaDeviceReset
and cudaDeviceSynchronize in this order. The result
was that the message kept being printed even after we called



TABLE II
CUDA APIS CATEGORIZED AS EXECUTION CONTROL [19]

API Name Description
cudaFuncGetAttributes Find out attributes for a given function.
cudaFuncGetName Returns the function name for a device entry function pointer.
cudaFuncSetAttribute Set attributes for a given function.
cudaFuncSetCacheConfig Sets the preferred cache configuration for a device function.
cudaFuncSetSharedMemConfig Sets the shared memory configuration for a device function.
cudaGetParameterBuffer Obtains a parameter buffer.
cudaGridDependencySynchronize Programmatic grid dependency synchronization.
cudaLaunchCooperativeKernel Launches a device function where thread blocks

can cooperate and synchronize as they execute.
cudaLaunchCooperativeKernelMultiDevice Launches device functions on multiple devices

where thread blocks can cooperate and synchronize as they execute.
cudaLaunchDevice Launches a specified kernel.
cudaLaunchHostFunc Enqueues a host function call in a stream.
cudaLaunchKernel Launches a device function.
cudaLaunchKernelExC Launches a CUDA function with launch-time configuration.
cudaSetDoubleForDevice Converts a double argument to be executed on a device.
cudaSetDoubleForHost Converts a double argument after execution on a device.
cudaTriggerProgrammaticLaunchCompletion Programmatic dependency trigger.

cudeDeviceReset, meaning that this API did not stop the
already-running GPU task.

Terminating the host-side process that has launched a GPU
task does not work for bothering our system. This is because
the “host-side process” in our case is the video game itself,
and terminating it loses the whole purpose of a cheater (i.e.,
playing that game). The detailed architecture of our system is
presented in Section V.

D. Monitoring Host Memory

We create mapped memory regions between the GPU and
the host to monitor the host memory. This functionality allows
a GPU to read from and write to a region allocated in the
host memory without any involvement of the host-side CPU
through direct memory access (DMA). On an NVIDIA GPU,
the cudaHostRegister API maps a given memory region
between the host and the GPU, as well as page-locks that
region so that it is never swapped out from the main memory.

The use of mapped memory makes our system resilient
from interception by a cheater. Because a mapped region is
accessed through DMA, no host-side instructions are needed
to be executed to access it. This means that the cheater has
no way to interrupt or cease the communication between our
system and the host memory. On the other hand, a non-
DMA method of communication with a GPU requires the
host to execute the cudaMemcpy API. A cheater could
hook calls of this API (for example by attaching a debugger
to the game process) to intercept our system. Note that
cudaHostRegister to create mapped memory regions is
called only at the beginning of the game process (explained in
Section V), while cudaMemcpy would be called every time
our system monitors the host memory if we were to use it.

V. OUR CHEAT DETECTION SYSTEM

A. System Components

Fig. 2 shows the components of our system and how the
communicate with each other to detect cheats.

Memory

Processes

Memory

Tasks

Game
Process

Memory 
allocator

Metadata LoadingCheat Detection

Non-mapped 
region

Game
Logic

Metadata 
transfer 
region

Object 
heap

Fig. 2. System Components and Communication

1 In the beginning, the game process invokes two GPU
tasks, the cheat detection task and the metadata loading task.
They run asynchronously from the game process and never
finish by themselves, unlike an ordinary GPU kernel that
finishes after some work. At the same time, the game process
allocates two memory regions, the object heap and the meta-
data transfer region, and maps them with GPU memory using
cudaHostRegister. We assume that everything until this
point is executed properly without interception by a cheater.

2 The game logic uses a designated memory allocator to
store an object that needs to be protected. The allocator chops
the object heap to the specified size and returns the pointer
to that region to the game logic. The allocator also stores the
metadata of the object in the metadata transfer region. The
details of the metadata are described in Section V-B.

3 The metadata loading task periodically copies the meta-
data from the metadata transfer region to a GPU memory
region that is not mapped with the host memory.

4 The game logic can freely write to and read from objects
allocated by our memory allocator as if they were allocated



void* mallocWithRegisterToHDIT(
int data_size, int limit_type,
int min_parameter, int max_parameter,
int max_change_rate);

Fig. 3. Allocation Function of Our Memory Allocator

by normal malloc.
5 The cheat detection task monitors the object heap and

detects cheats by checking the consistency of each object and
its metadata. This will further be explained in Section V-D.

B. Memory Allocator

The memory allocator abstracts the necessary procedures to
protect an object away from video game developers (i.e., the
user of our system). Fig. 3 shows the allocation function of our
memory allocator. The user specifies the size of the object to
be allocated to data_size. The other arguments are stored
as the metadata of the object, which we refer to as the Heap
Data Information (HDI) of the object. An object and its HDI
are associated with the same ID number.The other arguments
are explained in Section V-D.

We design the memory allocator so that it does not ask the
OS to allocate a new region, but it merely chops a part of the
memory region that has already been allocated at the start of
the game process. This design reduces the usage of the CUDA
API that maps host- and GPU-side memory regions only once.
It means that a cheater has no chance to intercept CUDA API
calls by means such as attaching a debugger after the mapped
region is created in the beginning. A possible attack in this
design is that a cheater can overwrite the binary code of the
game program so that it does not use our memory allocator.
We discuss a possible countermeasure in Section VII-B.

C. Metadata Loading Task

The metadata loading task periodically copies HDI (meta-
data of protected objects) stored by the memory allocator from
the metadata transfer region to a GPU memory region. Each
HDI has a unique and increasing integer as its ID. HDI is not
copied if the ID is less than the ones that are already copied.

The design choice of copying HDI from the metadata
transfer region to a GPU memory region (instead of having
the cheat detection task directly check HDI through DMA) is
to improve the resilience of our system. Because the GPU
memory region is not shared with the host-side, the HDI
cannot be overwritten from the host-side once copied. This
allows a cheater to have a small amount of time to maliciously
overwrite HDI to trick our system. We evaluate the resiliency
of our system against this type of cheaters in Section VI-E.

D. Cheat Detection Task

The cheat detection task periodically checks the HDI of
each object to detect cheats on that object. Specifically, our
system detects cheats using two methods.

1) Range-based: This method is used to detect the Out-of-
Range (OR) cheats. It checks if the value of the object is

class Player {
int HP;
char *name;
int *attack; // originally ‘int attack’

Player(int H, char *n, int a) {
this.HP = H;
this.name = n;
this.attack
= mallocWithRegisterToHDIT(

sizeof(int),
1, // limit_type
0, // min_parameter
10, // max_parameter
0); // not relevant for limit_type=1

*this.attack = a;
}

};

Fig. 4. Usage of Our System to Find OR Cheats by Range-based Method
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Fig. 5. Detection of OR Cheats in Action

contained within the range between min_parameter
and max_parameter in the HDI. If this condition is
not met, it is recognized as a cheat.

2) Diff-based: This method is used to detect the Too-
Drastic (TR) cheats. It checks if the difference of the
object values between the current and the previous
frames is less than max_change_rate in the HDI.
We assume that a frame is a fixed amount of time (e.g.,
1
60 sec.), and use the elapsed time from the start of the
task to recognize a new frame. The elapsed time can be
acquired independently from the host OS by dividing
the number of spent GPU clocks by the clock rate.

Fig. 4 shows an usage of our system, where a member
attack of a class Player is protected. The limit_type
parameter decides which method (Range-based or Diff-based)
is applied to detect cheats on this object. In the figure, it is
set to 1 so that the Range-based method is applied. To use
our memory allocator, the programmer needs to apply small
changes to the game logic. Specifically, the type of attack
is changed from int to int* and the code to store value to
attack is modified to apply pointer de-reference.

Fig. 5 shows an instance of the OR cheating being detected
for a class defined by Fig. 4. In this scenario, the value
of attack is overwritten to -1 by the cheater. The cheat
detection task running in the GPU periodically compares the



TABLE III
EVALUATION ENVIRONMENT

OS Windows 10
GPU NVIDIA GeForce GTX1070 (GDDR5 8GB)
CPU AMD Ryzen 5 3500 (6 cores)

value with the metadata, and finds that the current value (-1)
is not contained in the predefined range (0 to 10), and thus
determines that the OR cheating is conducted.

VI. EVALUATION

A. Research Questions

Our evaluation answers three research questions shown
below. The evaluation environment is listed in Table III.

1) Can our system indeed detect the OR and TD cheating?
2) How frequently can our system detect cheating?
3) How large is the overhead that our system incurs?
4) How resilient is our system to a cheater who attacks the

metadata transfer region?

B. Cheat Detection Experiment

In this experiment, we test that our system can detect both
the OR and TD cheating as follows. Note that we do not
violate any end-user license agreements or laws because we
overwrite the memory content of programs that we develop
on our own physical computer.

OR: The victim is mimicked by a simple program that
stores a single integer in a memory region allocated using
our system. The metadata is set so that the integer must be
more than or equal to 0, and less than or equal to 100. We
use Cheat Engine [21] to overwrite the integer value to 101
from outside of the victim’s process.

TD: The victim is again mimicked by a simple program
that stores a single integer to a memory region allocated
using our system. The metadata is set so that the maximum
allowed change of the integer per frame is 100. We use Cheat
Engine [21] to overwrite the integer value from 0 to 101. This
is equivalent to a change of 101 per frame.

Results: A warning message by the cheat detection task
was printed to the console. This means that our system could
successfully detect the target cheats.

C. Frequency of Cheat Detection

In this experiment, we evaluate the possible interval at
which our system can detect cheating when the number of
protected objects increases. A shorter interval means more
resiliency of our system against short-term cheating such as
switching the value of a compromised object between legit
and illegal ones every frame.

To evaluate the interval for different numbers of objects,
we swipe the number of integers protected by our system. The
metadata is set so that the same cheat detection is conducted as
in the OR cheat detection experiment. The cheat detection task
is modified to call the Clock64 function at the beginning of
the OR cheat detection logic. This function returns a value that

Fig. 6. Cheat Detection Intervals for Different Number of Objects

Fig. 7. Overhead Incurred to the Fire Strike benchmark

increments every clock cycle, and thus we can measure elapsed
time by comparing the return values among two invocations.

Fig. 6 shows the result of our experiments. Note that both
x- and y-axes are log-scaled. We draw two takeaways from the
results. First, the interval grows almost linearly to the number
of protected objects. This is expected because the number of
memory accesses to the object heap and the number of times
that cheat detection logic is executed increase linearly to the
number of objects. Second, the interval exceeds 1

60 seconds
(≈ 16.7 ms) when the number of objects is 10,000. This means
that the number of objects must be less than this amount if the
programmer wants to check object integrity at every frame.

D. Performance Overhead

We evaluate the overhead incurred to the video game that
our system shares the GPU with. To this end, we use Fire
Strike benchmark included in the 3DMark benchmark suite,
which is a showcase DirectX 11 benchmark for modern
gaming PCs [22]. We launch Fire Strike benchmark along with
a simple program that uses our system to protect its objects,
and measure how much the Fire Strike performance drops.

Fig. 7 shows the results of the overhead evaluation. The
label vanilla shows the performance when our system is not
co-located, and the labels with protection (N objects) show
performance when the co-located program allocates N integers
with our system. We draw two takeaways from the results.
First, the performance overhead is around 26%, which is not
negligible. We suspect that this overhead mainly comes from
memory bandwidth congestion caused by the GPU monitoring
the host memory as fast as possible. The GPU we use has 15



TABLE IV
RESILIENCY OF METADATA TRANSFER

# of Objects 10,000
Transfer Successful Rate 6.3%

Chance of 25 HDI Not Successfully Transferred 19.7 %

Streaming Multiprocessor and occupying two of them for the
cheat detection and metadata loading tasks would result only in
2
15×100 ≈ 13 % of overhead. The fact that the actual overhead
is reasonably larger than this suggests that the bottleneck
is not the computation, but memory bandwidth. Evaluating
our system with GPUs with larger memory bandwidth is a
part of future work. Second, the performance overhead has
no significant difference even when the number of protected
objects is increased by 100× (from 10 to 1,000). This result
also suggests that the overhead comes from memory transfer.
Note that the current system monitors the host memory as
fast as possible, thus the memory congestion level is constant
regardless of of number of protected objects.

E. Resiliency of Metadata Transfer

We evaluate the resiliency of our system against a cheater
who overwrites HDI stored in the metadata transfer region.
The metadata loading task copies metadata to GPU memory
as fast as possible to cope with this. However, it might still be
possible to intercept the metadata loading task if the cheater
overwrites the metadata transfer region at the right time.

We mimic a cheater by creating a malicious thread in the
context of a simple target program that allocates 10,000 objects
with our system. The malicious thread overwrites legitimate
HDI in the metadata transfer region to set their IDs to 0,
which makes the metadata loading task not copy the HDI.
The malicious thread is created by CreateThread.

Table IV shows the result of the resiliency evaluation. The
numbers are averaged over 10 runs. Among the 10,000 HDI,
6.3% were transferred from the metadata transfer region to
GPU memory on average. This means that if an attacker
needs to modify N protected objects to conduct a single
cheat, they must win a ((1− 0.063)N × 100)% chance of not
being detected. This is because only a single protected object
detected as maliciously modified proves that a cheat has been
attempted. For example, when N = 25, the attacker must be
as lucky as winning a 19.7 % chance.

VII. DISCUSSION

A. Applicability to Non-NVIDIA GPUs

We discuss the applicability of our system to non-NVIDIA
GPUs. A GPU must meet the following conditions:

1) Shared memory regions between a GPU and the host-
side CPU can be created.

2) A shared memory region can be accessed by a GPU
through DMA without any host involvement. Combined
with 1), this allows our system to copy HDI and monitor
protected objects with no interception from a cheater.

3) Tasks running in a GPU cannot be intercepted by the
host. This allows our system to keep running even when
a cheater tries to stop it with a kernel-level privilege.

AMD GPUs meet all the conditions. First, their Pinned
memory is host memory that is mapped into the address space
of all GPUs [23] and can be accessed via DMA. Second, the
Heterogeneous-Compute Interface for Portability (HIP), which
is the standard programming interface for AMD GPUs, does
not have an API that stops an already-running GPU task. The
list of all the HIP APIs is listed on the official website [24]
(we omit the list here for brevity).

Intel’s discrete GPUs meet all the conditions. First, their
Unified Shared Memory (USM) is visible to both host and
device(s) [25], and the GPU can perform DMA (Direct Mem-
ory Access) over PCI to system memory [26]. Second, their
programming interface (SYCL) neither has an API that stops
an already-running GPU task. In this programming model,
a programmer enqueues a task using Queue. For example,
Queue::submit accepts a callable object to be executed
on a GPU. Although it supports multiple ways of launching
GPU tasks, it does not have any API for dequeuing a task [25].

Intel’s integrated GPUs do not support our system as-
is because the GPU memory is physically shared with the
CPU [27]. Therefore, a cheater who has full control over the
host OS can overwrite GPU-side HDI at any time. However,
these GPUs also have a small size of local memory (64 KB
per 8 execution units). Our system could be extended to utilize
this local memory to store HDI copied from the main memory.

B. Protection of Program Code

We assume that program code is protected from any over-
writing attempts, regardless of the fact that a cheater has full
control over the host OS. If this does not hold, the cheater can
overwrite the game logic so that it does not use the memory
allocator provided by our system to bypass it. This protection
must be done in two phases: (1) the executable and related files
of the game and our system must not be overwritten before
they are loaded to host memory (offline protection), and (2)
the in-memory binaries of the game and our system must not
be overwritten at runtime (runtime protection).

One way of achieving offline protection is to utilize packers.
A packer converts an executable so that it cannot be disassem-
bled unless the conversion algorithm and/or the encryption key
used for conversion is known. Although packers are often used
by malware to evade static analysis [28], [29], they can also be
used to protect the program code of legitimate software (e.g.,
video games) from cheaters’ overwriting attempts.

One way of achieving runtime protection is Virtualization
Based Security (VBS) [30] available in recent Windows. VBS
contains the user-visible OS in a virtual machine (VM), and
a sidecar VM ensures some security aspects even if the user-
visible OS is fully controlled by an adversary. One such aspect
is memory integrity, where executable pages themselves are
never writable [31]. Because this is ensured by the hypervisor,
a cheater cannot overwrite the in-memory binaries of the game
and our system unless they completely disable VBS.



C. Attacks to Metadata Transfer Region

A possible attack on the metadata transfer region besides
the one described before is to create many fake HDIs. This
would prolong the cheat detection interval as the number of
HDIs to check is increased. Our system can handle this attack
as follows. (1) If the attacker only creates a fake HDI and no
corresponding fake data in the object heap, it is detected as a
cheat because the fake HDI and data in the object heap do not
agree with each other. (2) If the attacker also creates fake data
in the object heap, the number of fake objects is limited by
the size of the object heap. Because the size of the object heap
must be configured so that the cheat detection interval is short
enough even if it is full, filling it up with fake data would not
increase the cheat detection interval to an unexpected length.

D. Attacks to Object IDs

An attacker can overwrite IDs assigned to protected objects
stored in the host memory. This both includes (a) IDs of
already existing objects, and (b) the ID that is to be assigned
next time a new protected object is allocated. This makes
three types of attacks possible; (1) the next ID to be assigned
can be overwritten either to a random number or an already
used one, (2) the ID of an already allocated object can be
overwritten, and (3) the IDs of two already allocated objects
can be swapped (e.g., changing object A’s ID from 1 to 2 and
changing object B’s ID from 2 to 1).

Attacks (1) and (2) do not evade our system, while attack (3)
could. For attack (1), a new object with a random ID can be
properly monitored because there is no constraint on the IDs
except the uniqueness. A new object with an already assigned
ID can be detected as an attack because it should never happen.
For attack (2), it can be recognized as an attack because the
ID of the corresponding object in the GPU memory remains
unchanged and the mismatch between an object and the HDI
implies a cheat. For attack (3), our system can be evaded if
the two objects are carefully selected by an attacker.

VIII. CONCLUSION

In this paper, we proposed a cheat detection system that
utilizes a GPU. Our system does not need to have a kernel-
level privilege but is still resilient against a cheater who has
full control over the OS of the machine. Our evaluation shows
that it can find two types of cheating (out-of-range and too-
drastic), and the metadata required to detect cheating can
be securely transferred with a 6.3% chance. We also gave
extended discussions on our system, such as its applicability
to non-NVIDIA GPUs and the limitations.
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