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Background Real Example

Performance prediction of a given program is highly impor-
tant but difficult.

Importance: environments where the program is developed

and where it deployed are not the same (ex: developed in a

handy laptop, then deployed to a powerful server).
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Difficulty: two machines have different performance balance
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8K x 8K Matrix factorization w/ Python on various machines
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Patterson and Hennesy, “"Computer Architecture, Fourth Edition: A Quantitative 2 ExaCtly the. same program scales dlfferently .On three machi-
Approach”, 2006 (Fig. 5.2 in page 289) nes (due to different flops/memory latency ratios).

Proposal and Proof-of-Concept Implementation
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Preliminary Results and Future Vision

Experiment Settings: Future Vision:

Workload: 8K x 8K matrix-vector multiplication with no tiling 1. Running profilers on our mechanism greatly helps dia-
Metric: Normalized throughput (inverse of the execution time) gnosing perf issues stemming from different perf balances.
Q: Can our method adjust perf balance among two machines??
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Throughput scales better in
machine A (old one),since
machine A is less memory
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access latency sensitive.
Number of Threads Number of Threads 2. Perf models of multi-threaded apps requires explicit/implicit
—eactual -a-expected —eactual -a-expected data-dependency analysis and often inaccurate. Our mecha-
+  Byinserting increasing # of nism automatically propagates the effect of prolonged
TTTT. . NOPs w.rit # of threads, our critical sections as the whole code is executed.
"z proposal can emulate the

Fraors-1 normalized throughput achie- Technical Challenges:
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% 4 of NOPS — 0 ved in machine B (using only 1. Deciding number of NOPs to insert systematically
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In the future
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*This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).



