Performance Prediction of Memory Access
Intensive Apps with Delay Insertion: A Vision
02 Soramichi Akiyama Takahiro Hirofuchi Hirotaka Ogawa
@Al T National Institute of Advanced Industrial Science and Technology (AIST), Japan
Background Real Example

Performance prediction of a given program is highly impor-
tant but difficult.

Importance: environments where the program is developed

and where it deployed are not the same (ex: developed in a

handy laptop, then deployed to a powerful server).
y 1aptop PIOY P) 12345678 12345678 12345678

P : : Number of Procs Number of Procs Number of Procs
Difficulty: two machines have different performance balance

among components. —e—actual -~ expected —e—actual -~ expected —e—actual -+~ expected
8K x 8K Matrix factorization w/ Python on various machines

Processors relatively sp-
eeding up compared to Machine A |Machine B Machine C

memory . CPU (Xeon) E5-2603 vl |E5-2699 v3 | E5-2690 v4
- Newer machines are

F o more memory latency- Mem DDR3 1600 |DDR4 2133 |DDR4 2133

1 sensitive Perfect Scale? |Yes No No

1980 2005 2010

10

Patterson and Hennesy, “"Computer Architecture, Fourth Edition: A Quantitative 2 ExaCtly the. same program scales dlfferently .On three machi-
Approach”, 2006 (Fig. 5.2 in page 289) nes (due to different flops/memory latency ratios).

Proposal and Proof-of-Concept Implementation

Main Ideas: Implementation Choices:
1. Emulatg pBgrforrT}ance balancg of the target machine with Based-on | Pros Cons
namic Binary Instrumentation :
Y Y . . . Hardware | Small overhead Less practical
2. Run the target code as-is to retrieve more useful informa- . .
apiction Exceutio . Agroputed Time Usege Normal Execution: DBI Applicable to any lang |Large overhead
achine ! Machine A °
e | e o0 CPU stalls due to me- poC Implementation:
Vo ; e = 0 ,
Machine B I mory access 40% of QEMU'’s dynamic binary instrumentation mechanism (user-
b ’ Mem:CPU " " " . . (o . .
il B 1) t:qme '””maCh'O”? A, but mode) is modified to insert delays after memory read/writes.
(WoUorms Wiem oo the stall s 50% In ma- QEMU JIT Workflow What we _ Applicable to any
chine B (different perf implemented | N
Fig. 2. Different Performance Balance between Machines ba|ance). e angS/CPU arcns
Original ?nEtl\eArU Delay (‘1d 132, (Target | |~ # of memory
icati i regated Time Usage 1 . i - NOP : . .
ﬁpgéiagmnuﬁfsgu}gw:}imnment i igfg)ufl;t;lurll;ted gmfmnment Delayed ExeCUtlon (eBm?(r8y6) |:> mediate i |:> NOP i:> (eBlni;y6) related InStrUCtI_
Machine A | Machine A Memory accesses are g Code | ADD | 1 9 ons reduced to 4
+ Delay Inserted : + Delay Inserted ' d NOPs are I
: elayed to prolon | ! | /| -
DNV, D) cPy Y X o 9 Y | inserted after | y Small extra
i _1.1 the stall to 50% in ma- Nothing | 1d.32,sti32, | Nothing |overhead thanks
[[WePU cycles WVem cycles [jinserid Doy | chine A. >pecial tl, P to JIT cache

Preliminary Results and Future Vision

Experiment Settings: Future Vision:

Workload: 8K x 8K matrix-vector multiplication with no tiling 1. Running profilers on our mechanism greatly helps dia-
Metric: Normalized throughput (inverse of the execution time) gnosing perf issues stemming from different perf balances.
Q: Can our method adjust perf balance among two machines??

A 8 A

1
Prof(‘Tzrget |
pp , |f

Delayed Exec

Throughput scales better in
machine A (old one),since
machine A is less memory

-
v
rs
- o
<o
rd
- - o
A 7 :
I P 1o :
i - 2]
* r v’ ’1(7
’ - , ! g !
i # % £
i\ |
\ =
i -
> o=

access latency sensitive.
Number of Threads Number of Threads 2. Perf models of multi-threaded apps requires explicit/implicit
—eactual -a-expected —eactual -a-expected data-dependency analysis and often inaccurate. Our mecha-
+ Byinserting increasing # of nism automatically propagates the effect of prolonged
TTTT. . NOPs w.rit # of threads, our critical sections as the whole code is executed.
"z proposal can emulate the

Fraors-1 normalized throughput achie- Technical Challenges:

of NOPS =8

% 4 of NOPS — 0 ved in machine B (using only 1. Deciding number of NOPs to insert systematically
123456738 12345678 machine A). 2. System call overhead that may break the whole balance

Number of Threads NMumber of Threads

In the future

Normalized Throughput
= W s o~ 0

#of NOPS =0

of NOPS = 24

&
4
A
’

Normalized Throughput
L T T O ¥ I = L T
Normalized Throughput
= fJ (e B LA ()] at 00

*This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

