
Performance Prediction of Memory Access

Intensive Apps with Delay Insertion: A Vision
Soramichi Akiyama Takahiro Hirofuchi Hirotaka Ogawa

National Institute of Advanced Industrial Science and Technology (AIST), Japan

Preliminary Results and Future Vision

Background Real Example

Performance prediction of a given program is highly impor-

tant but difficult.

Importance: environments where the program is developed

and where it deployed are not the same (ex: developed in a

handy laptop, then deployed to a powerful server).

Difficulty: two machines have different performance balance

among components.

Patterson and Hennesy, “Computer Architecture, Fourth Edition: A Quantitative

Approach”, 2006 (Fig. 5.2 in page 289)

Processors relatively sp-

eeding up compared to

memory

 Newer machines are

more memory latency-

sensitive

8K x 8K Matrix factorization w/ Python on various machines

Machine A Machine B Machine C

CPU (Xeon) E5-2603 v1 E5-2699 v3 E5-2690 v4

Mem DDR3 1600 DDR4 2133 DDR4 2133

Perfect Scale? Yes No No

 Exactly the same program scales differently on three machi-

nes (due to different flops/memory latency ratios).

1. Emulate performance balance of the target machine with

Dynamic Binary Instrumentation

2. Run the target code as-is to retrieve more useful informa-

tion than model-based techniques can provide

Normal Execution:

CPU stalls due to me-

mory access 40% of

time in machine A, but

the stall is 50% in ma-

chine B (different perf

balance).

Delayed Execution:

Memory accesses are

delayed to prolong

the stall to 50% in ma-

chine A.

Proposal and Proof-of-Concept Implementation

QEMU’s dynamic binary instrumentation mechanism (user-

mode) is modified to insert delays after memory read/writes.

- Applicable to any

langs/CPU archs

- # of memory

related instructi-

ons reduced to 4

- Small extra

overhead thanks

to JIT cache

Experiment Settings:
Workload: 8K x 8K matrix-vector multiplication with no tiling

Metric: Normalized throughput (inverse of the execution time)

Q: Can our method adjust perf balance among two machines??

Future Vision:
1. Running profilers on our mechanism greatly helps dia-

gnosing perf issues stemming from different perf balances.

2. Perf models of multi-threaded apps requires explicit/implicit

data-dependency analysis and often inaccurate. Our mecha-

nism automatically propagates the effect of prolonged

critical sections as the whole code is executed.

Technical Challenges:
1. Deciding number of NOPs to insert systematically

2. System call overhead that may break the whole balance

*This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Main Ideas: Implementation Choices:

PoC Implementation:

Throughput scales better in
machine A (old one),since
machine A is less memory
access latency sensitive.

By inserting increasing # of
NOPs w.r.t # of threads, our
proposal can emulate the
normalized throughput achie-
ved in machine B (using only
machine A).

Based-on Pros Cons

Hardware Small overhead Less practical

Compiler Small overhead New compiler for all langs

DBI Applicable to any lang Large overhead

In the future

