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ABSTRACT
Analyzing system-noise incurred to high-throughput systems (e.g.,
Spark, RDBMS) from the underlying machines must be in the gran-
ularity of the message- or request-level to find the root causes
of performance anomalies, because messages are passed through
many components in very short periods. To this end, we consider
using Precise Event Based Sampling (PEBS) equipped in Intel CPUs
at higher sampling rates than used normally is promising. It saves
context information (e.g., the general purpose registers) at occur-
rences of various hardware events such as cache misses. The infor-
mation can be used to associate performance anomalies caused by
system noise with specific messages. One challenge is that quanti-
tative analysis of PEBS overhead with high sampling rates has not
yet been studied. This is critical because high sampling rates can
cause severe overhead but performance problems are often repro-
ducible only in real environments. In this paper, we evaluate the
overhead of PEBS and show: (1) every time PEBS saves context in-
formation, the target workload slows down by 200 – 300 ns due to
the CPU overhead of PEBS, (2) the CPU overhead can be used to
predict actual overhead incurred with complex workloads includ-
ing multi-threaded ones with high accuracy, and (3) PEBS incurs
cache pollution and extra memory IO since PEBS writes data into
the CPU cache, and the severity of cache pollution is affected both
by the sampling rate and the buffer size allocated for PEBS. To the
best of our knowledge, we are the first to quantitatively analyze
the overhead of PEBS.
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1 INTRODUCTION
Analyzing performance anomalies of high-throughput systems in
data centers, such as data processing frameworks or RDBMS, must
focus on each message or request (instead of each function or code
block) to find the causes because of two reasons: (1) messages go
through many components running in parallel on different CPUs
and hosts (2) eachmessage lives for very short period. For example,
Zhao et al. [17] constructs control flows of individual requests from
logs to find the root causes of performance anomalies of distributed
systems (e.g., HDFS, Yarn, HBase). Similarly, Ousterhout et al. [9]
uses logs to analyze the time duringwhich each Spark SQL query is
blocked due to network IO or disk IO, and found that these factors
are not necessarily the bottlenecks in Spark.

System-noise is one factor of performance anomalies in high-
throughput systems. For example, a large message may unexpect-
edly cause a larger number of cache misses than others do, result-
ing in a sudden latency spike that cannot be found by a coarse-
grained profiling.We consider using Precise Event Based Sampling
(PEBS, provided in Intel CPUs) to analyze system-noise in the gran-
ularity of message- or request-level is a promising way to find the
root causes of performance anomalies of high-throughput systems.
PEBS saves context information of the target workload, such as the
general-purpose registers and the target address of a load instruc-
tion, at the time of specified hardware event occurrences such as
cache misses. PEBS provides much more accurate and fine-grained
profiling than normal performance counters, whichwe believe use-
ful for mapping the sampled hardware events to each message or
request that stays inside the system for only a fraction of time.

To use PEBS to analyze system-noise in the message-level, the
overhead of PEBS must be studied, although it has not yet been
done, because of two reasons. First, mapping collected context in-
formation to each message requires much higher sampling rates
than used normally because a message is very transient. Second,
collecting context information should be online because real world
performance problems are often very difficult to reproduce in an
offline environment. Therefore, a need arises to quantitatively an-
alyze the overhead of PEBS and to predict how much overhead
PEBS incurs to a given target workload.

In this paper, we examine how two important configuration op-
tions of PEBS, namely the sampling rate and the buffer size allo-
cated for PEBS, impacts the performance of the target workload.
We first show that the time by which the target workload slows
down is accurately predictable from the sampling rate for a simple
workload. After that, we show this claim is also applicable to com-
plex CPU-intensive workloads including mutli-threaded ones. At
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last, we study how the CPU overhead and cache pollution caused
by PEBS have complex effects to cache-sensitive workloads.

The structure of this paper is as follows. Section 2 shows an
overview of PEBS including its difference, when compared to the
normal performance counters. Section 3 describes the types of over-
head that each of the configuration options of PEBS incurs. Sec-
tion 4 evaluates the overhead of PEBS usingmicro andmacro bench-
marks. Section 5 provides a guide to use PEBS at high sampling
rates, considering the knowledge presented in this paper. Section 6
reviews related work and Section 7 summarizes this paper.

2 PRECISE EVENT BASED SAMPLING (PEBS)
2.1 Performance Counters
Performance counters are a hardware-based performance moni-
toring mechanism, supported not only in Intel CPUs but also by
many other vendors. We explain how it works for the Intel case
without losing generality. Hardware events are pre-defined such
as ICACHE.MISSES (the number of instruction cache misses) or
MEM_UOPS_RETIRED.ALL_LOADS (the number of load micro oper-
ations retired). The user can choose a small number of them (up to
2, 4, or 8 depending on the CPU) to let the CPU count the events.
The CPU then counts the number of specified events using a des-
ignated model-specific register for each event, which we refer to
as counter registers hereafter. A counter register overflows after
the event occurs a specified number of times, R. This is called reset
value, because it is implemented by setting−R to counter registers
at reset. Reset value is also called sample after value in some lit-
erature. Each core of a CPU has their own counter registers. This
enables performance analysis in per core basis.

Profiling using performance counters is interruption-based. The
CPU invokes an ACPI interruption when one of the counter reg-
isters overflows. The operating system receives the interruption
and collects information about the profiled application nearly at
the time of the event occurrence that has triggered the interrup-
tion. For example, counting ICACHE.MISSES and saving the pro-
gram counter every time an interruption is invoked can tell which
program or function causes a lot of instruction cache misses.

2.2 PEBS Overview
Precise Event Based Sampling (PEBS) is an extension to the nor-
mal performance counter by Intel [3]. The largest difference is that
PEBS saves a set of context information using the hardware when
a counter register overflows. This greatly reduces the overhead in-
curred by interruption handling required every time a counter reg-
ister overflows with the normal performance counters.

Figure 1 shows how PEBS saves context information.
(1) The user chooses a set of events and specifies if each counter

should be PEBS-enabled or not. Thismeans that PEBS coun-
ters and normal counters can be used together at the same
time. The CPU counts the number of specified events us-
ing a designated counter register for each event.

(2) When the counter register for a PEBS-enabled event over-
flows, the CPU triggers aPEBS assist (instead of invoking
an interruption) that executes a pre-defined micro-code.

(3) The micro-code saves context information, called a PEBS
record, into amemory region called thePEBS buffer that

Figure 1: Overview of Intel PEBS. A PEBS record is written to
the PEBS buffer by the CPUwhen a PEBS event has occurred
specific times and thus the corresponding counter register
overflows (no interruption invoked). The PEBS index points
the current tail of the PEBS records inside the PEBS buffer.

starts from an address referred to as the PEBS base. It can
contain multiple PEBS records and the current tail inside
the PEBS buffer is called the PEBS index.

Once the PEBS index reaches the PEBS threshold, a hardware
interruption is triggered to tell the operating system that the PEBS
buffer is almost full and has to be drained for further processing.
By saving context information using hardware-based micro-code,
PEBS has two advantages over the normal performance counters:

(1) PEBS reduces the number of interruptions and thus it is
expected to reduce performance overhead. For example, if
PEBS buffer can contain 100 PEBS records before an inter-
ruption is invoked, the number of interruptions is reduced
to 1/100 compared to the normal performance counters.

(2) The gap between the time a counter register overflows
and the time the context information is saved is much
smaller than the interruption-based method. This makes
PEBS more precise, as the name suggests.

The content of a PEBS record differs depending on the genera-
tion of the CPU cores. In recent CPUs after Skylake micro architec-
ture, a PEBS record has the values of the general purpose registers
(ip, rax, ...), the target address and the latency information if the
current instruction is a load, a hardware transaction (tx) abort rea-
son flag, if the event is tx-related, and the hardware time stamp.
Note also that not all performance events are usable with PEBS,
and each micro architecture has different set of PEBS-able events.

3 PEBS OVERHEAD
PEBS is believed to incur a negligible overhead to target workloads,
because saving PEBS records is done by hardware. Many profil-
ing systems claim that their overhead is small enough just because
they use PEBS [5, 10]. However, when PEBS is used for analyzing
system-noise for each message of request, the sampling rate must
be much higher than typical function-level profiling. The overhead
PEBS incurs when used at high sampling rates has never been ex-
amined, nor documented by Intel. In this section, we explain how
each configuration option of PEBS can incur overhead and we eval-
uate them in Section 4.
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3.1 Reset Value
Reset value controls the sampling rate, thus it is the most impor-
tant parameter for PEBS. Decreasing reset value makes the pro-
filing more fine-grained, but it invokes a larger number of PEBS
assists. To our surprise, we found that the CPU overhead of one
PEBS assist is more than 200 nano seconds. This is because PEBS
assist is implemented by a micro-code, rather than a designated
ciruit. Therefore, when a PEBS assist is executed on a CPU core,
the workload running on the core is suspended and the execution
pipeline and the TLB are all flushed.

Given the fact that a typical random access latency to the main
memory is around 50 – 100 ns, this overhead is completely non-
negligiblewhen the reset value is configured to be very small (equiv-
alent to a very high sampling rate). Therefore, the usermust choose
a moderate reset value that is enough fine-grained for the purpose
of the analysis but does not incur too much overhead.

3.2 PEBS buffer size
Increasing the size of the PEBS buffer decreases the number of
interruptions invoked during profiling because larger buffer can
have larger number of PEBS records before it becomes full. This
obviously decreases the number of context-switches to and from
the OS, which causes both the TLB and the execution pipeline to
be flushed.

However, we found that merely increasing the size of the PEBS
buffer does not always reduce the overhead to the profiled system.
This is because PEBS writes PEBS records via the CPU cache, but
not directly to the main memory. As a result, increasing the size of
the PEBS buffer incurs an overhead for two reasons:

(1) Increased number of cache-misses due to the cache usage
by PEBS assists.

(2) Increased amount of memory IO, especially when PEBS
assists and the profiled program alternatingly evict the
cache lines used by the other.

Therefore, the size of the PEBS buffer should be chosen to mini-
mize the sum of overhead incurred by interruption handling, cache
misses, and extra memory IO.

The PEBS buffer size must be equal to the size of a PEBS record
when more information than saved by PEBS is needed. For exam-
ple, because timestamps are not saved by PEBS in CPUs older than
Skylake micro-architecture, an interruption is required every time
a PEBS assist occurs so that the OS can save timestamps if the user
wants them. However, we do not deal with this case in this work
and we assume the PEBS buffer size is freely configurable.

4 QUANTITATIVE ANALYSIS
4.1 Set Up
In order to measure the PEBS overhead flexibly and accurately,
we created our own kernel module that configures the PEBS func-
tionality with specified parameters. Existing tools such as Linux
perf are intended to be used for analyzing the performance of the
profiled applications but not the performance of PEBS itself, thus
they do not allow us to configure every single low-level parameter.
For example, perf does not support changing the size of the PEBS

Table 1: Evaluation Environment

Machine 1 Machine 2 Machine 3
OS Debian GNU/Linux 8 (Linux kernel 4.9)
CPU Xeon E5-2630 v4 Xeon E5-2699 v3 Core i5 6400
Arch. Broadwell Haswell Skylake
# Cores 10 18 4
LLC 25 MB 45 MB 6 MB

CPU freq. 2.2 GHz 2.3 GHz 2.7 GHz
Mem lat. 78 ns 88 ns 56 ns

buffer to an arbitrary value. Another reason to make our own ker-
nel module is the existing tools have non-negligible software over-
head [12] to support the easy-to-use interfaces and the rich variety
of analysis.

The kernelmodule recieves the PEBS buffer size, hardware coun-
ters to be counted, and reset values for each counter as the parame-
ters of the init ioctl call. After it is initialized, the module receives
ACPI interruptions every time the PEBS threshold is reached. The
module counts the number of PEBS assists that have occurred after
the last interruption by PEBS_index−PEBS_base

sizeof(PEBS_record) when an interruption
is received. It then resets the PEBS_index to the PEBS_base. This
means that the PEBS records written are just ignored. After the tar-
get workload has finished, the module prints the number of PEBS
assists during the whole run across all cores and exists.

Table 1 shows the operating system, CPU model name, CPU
core micro architecture, the number of cores, the size of the last
level cache (LLC), the CPU base frequency (not the “turbo boost”
frequency), and the latency of a random memory access of the ma-
chines we use in the evaluation. The kernel is updated to a recent
one (4.9) from the default one of Debian 8 (3.16). The memory la-
tency was measured by Intel Memory Latency Checker [11]. We
mainly use machine 1, which has the latest server-class CPU we
have, and use machines 2 and 3 as well in some experiments for
supporting the findings.

4.2 CPU Overhead
In this section, we estimate the CPU overhead of PEBS. The CPU
overhead consists of CPU cycles spent for PEBS assist itself, the ef-
fect of execution pipeline flushes due to the PEBS assist micro-code,
and the overhead for interruption handling when the PEBS buffer
becomes full. In this section, we set the PEBS buffer size to the
largest allocable to make the overhead incurred by interruptions
negligible so that we can measure the truly unavoidable overhead
of PEBS. As shown in the later sections, PEBS also incurs cache
pollution and extra memory IO due to cache evictions because
PEBS records are written to the CPU cache. To avoid them and
measure only the CPU overhead, we applied PEBS to a busy loop,
which has (almost) no data read/write. The PEBS event specified is
UOPS_RETIRED.ALL. This event “counts the number of micro-ops
retired” [3], which means that this is one of the most aggressive
usage of PEBS. The PEBS buffer size is set to the largest allocable
size by kmalloc in our environment (4 MB). The reset values are
set to 128000, 64000, 32000, 16000, 8000, 4000, and 2000. The work-
load executes 10× 1024× 1024× 1024 (10 G) times of busy loops in
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Figure 2: Number of PEBS assists vs. busy loop elapsed time and the best-fit lines.

Figure 3: PEBS buffer size per core vs. memory IO caused by cache spill in machine 1 (Broadwell, 10 cores) and machine 2
(Haswell, 18 cores). Both CPUs have 2.5 MB LLC/core. Reset values: 2K (left), 4K (middle), 8K (right).

a single core. We measured the elapsed time of the workload with
and without PEBS with various reset values shown above.

Figure 2 shows the elapsed time and the number of PEBS assists
occurred in machines 1, 2, and 3 (from left to right). Each point
corresponds to each reset value (larger reset value yields smaller
amount of overhead). The results are averaged over three runs. The
x axes show the number of PEBS assists, and the y axes show the
elapsed time. The graphs show that the elapsed time have strong
linear correlation with the number of PEBS assists. The blue line in
each graph shows the best-fit line that approximates the measured
results. In the machine 1 case, the best-fit line isy = 2.86×10−7x +
34.2. This means that the CPU overhead per PEBS assist is around
286 nano (286 × 10−9) seconds in machine 1. Similarly, the CPU
overhead is 238 nano seconds / PEBS assist in machine 2, and 232
nano seconds / PEBS assist in machine 3.

The CPU overhead of a PEBS assist is several times larger than
a random memory access latency, which is typically 50 ns – 100 ns
as shown in Table 1. This is small enough for traditional PEBS us-
age such as saving PEBS record at every 100K cache misses, but
for analyzing system-noise in the message-level graunurality, this
value must be carefully considered. We will investigate how to re-
duce the CPU overhead of PEBS in future work. For example, using
huge pagesmight be effective because the PEBS base is represented
as a virtual address thus the page table (or the TLB) is referred be-
fore saving context information.

4.3 Data IO
In this section, we estimate the overhead of data IO due to PEBS
assists. To our surprise, PEBS assists write PEBS records via the
CPU cache, but not directly to the main memory. Therefore, data

IO of PEBS assists always incurs cache pollution, and it incurs ex-
tra memory IO when the sum of PEBS buffer and the application
working set does not fit in the last level cache.

To confirm the fact that PEBS assists write data via the CPU
cache, we measured the amount of memory IO of the machine
when PEBS is applied to multi-threaded busy loops. The workload
creates the same number of threads as the number of cores and
each thread executes 10 × 1024 × 1024 × 1024 (10 G) times of busy
loops. Because busy loops incur almost zero memory IO, the ob-
served memory IO should all come from the data write of PEBS as-
sists. The memory IO is measured for machine 1 and machine 2 us-
ing a tool provided by Intel [14]. It uses a designated performance
monitoring unit implemented in the memory controller, thus mea-
suring memory IO can be orthogonal and in parallel with using
PEBS. Please note that this mechanism exists only in server-class
CPUs (Xeon E5/E7), thus this experiment cannot be conducted in
machine 3 (Core i5).

Figure 3 shows the relationship between the PEBS buffer size per
core and observed memory IO. The x axes show the PEBS buffer
size per core, and the y axes show the observed memory IO in
MB/s of read (R) and write (W) traffics. The reset values are set to
2000 in the figure on the left, 4000 in the middle, and 8000 on the
right. The size of the last level cache per core is 2.5 MB in both
machines 1 and 2, thus allocating more than 2.5 MB of PEBS buffer
per core exceeds the capacity of the last level cache.

Figure 3 shows three important things. (1) The observed mem-
ory IO is nearly 0 up to the case where the PEBS buffer size per core
is 2 MB, but it becomes non-negligible thereafter in both machines
and in all reset values. This is because all PEBS records are written
to the CPU cache when the PEBS buffer is smaller than the cache,
but the CPU cache starts spilling once the PEBS buffer becomes
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larger than it. (2) When the CPU cache spills, the observed mem-
ory IO increases as the size of PEBS buffer increases (c.f. 3 MB cases
vs 4 MB cases), although the amount of data PEBS assists write per
second is constant regardless of the size of the PEBS buffer. Please
be aware that the size of PEBS buffer does not affect the number
of PEBS assists per second. (3) Both reads and writes use equal
bandwidth, even though PEBS assists only write PEBS records and
our kernel module just ignores them in this experiment. This is be-
cause a write cache miss requires reading an entire cache line to
which the updated word belongs.

In summary, we conclude that PEBS incurs cache pollution be-
cause it writes PEBS records to the CPU cache, and larger the PEBS
buffer is more severe the cache pollution becomes. This requires
special consideration when the profiled application is cache sensi-
tive, and the application and PEBS compete for the shared cache
region. We investigate this case in Section 4.6.

4.4 Validation of CPU overhead
In this section, we show that the CPU overhead of PEBS estimated
in Section 4.2 can be used to predict the elapsed time of complex
CPU intensive workloads with PEBS enabled. We measure elapsed
time and the number of PEBS assists for SPEC CPU 2006 integer
benchmarks and compare two values:

(1) Measured elapsed time: the actual observed elapsed time
when PEBS is enabled. This includes both the time taken
for a workload itself and the time used for PEBS assists.

(2) Expected elapsed time: the sum of the elapsed timewhen a
workload is executed without PEBS and the expected CPU
overhead for PEBS assists.

The expected CPU overhead for PEBS assists is calculated by
α × N , where α is the CPU overhead per PEBS assist and N is the
number of PEBS assists during a workload run. If the values (1) and
(2) are close, we can quantitatively predict how much the target
system is slowed down without trials and errors. This is because
the number of specified events during a workload can be measured
by the normal performance counters with negligible overhead. Af-
ter the number of specified events is measured using the normal
performance counters, the user can decide the reset value for PEBS
based on the maximum allowed overhead, the required number of
samples, and the CPU overhead per PEBS assist. Without a precise
prediction of the expected elapsed time including the PEBS over-
head, the user must try many reset values to seek a good point that
achieves moderate overhead and the required sampling rate.

We use machine 1 in this section; α is 286 nano seconds per
PEBS assist (Section 4.2). The PEBS buffer size is 4 MB. Please note
that SPEC CPU workloads are single-threaded, thus 4 MB PEBS
buffer means 4 MB is allocated for the core on which the workload
runs. The reset values are set to 128000, 64000, 32000, 16000, 8000,
4000, and 2000. The PEBS event specified is UOPS_RETIRED.ALL.

Figure 4 shows the measured and expected elapsed time for all
SPEC CPU 2006 integer benchmarks. The x axes show the number
of PEBS assists occurred during the execution, and they axes show
the measured and expected elapsed time. Each point corresponds
to reset value of 128K, 64K, 32K, 16K, 8K, 4K, 2K respectively from
left to right. The values were averaged over three runs. Figure 5
shows relative error E in % of measured elapsed time against the

expected elapsed time for each benchmark and reset value. The
values are calculated by:

E =
Measured Elapsed Time − Expected Elapsed Time

Expected Elapsed Time
. (1)

A large positive value means that the actual overhead is much
larger than expected.

For all benchmarks other than omnetpp, the two lines for each
benchmark in Figure 4 almost overlap. The relative errors shown in
Figure 5 are also small for these benchmarks; the relative errors are
less than 4% in all cases, and less than 2% in many cases. However
for omnetpp, the relative errors reach tp to 10+% and they show
strong negative correlation with the reset value (smaller the reset
value is, larger the relative error becomes). We analyze the reason
for this later in Section 4.6.

In summary, we conclude that for many CPU intensive work-
loads the CPU overhead of PEBS estimated in Section 4.2 is well
suited to the prediction of the elapsed time when PEBS is enabled.

4.5 CPU Overhead on Multi-threaded
Application

In this section, we show that the CPU overhead per PEBS assist
estimated in Section 4.2 can be applied to multi-threaded applica-
tions as well. Due to the space limit, we use one multi-threaded
application from NAS Parallel Benchmarks, EP. It “generates pairs
of Gaussian random deviates” [2] and it is embarrassingly parallel.
We use EP because it is highly robust to the CPU cache size thus
the effect of data IO shown in Section 4.3 is avoided. The robust-
ness was confirmed by allocating a small portion of the CPU cache
by Intel CAT (Cache Allocation Technology) [7] and ensuring that
the elapsed time did not change. The size of the PEBS buffer is
1 MB per core (instead of 4 MB) because allocating 4 MB per core
makes the PEBS buffer alone larger than the CPU cache. Machine
1 is used for this experiment as the representative case.

Figure 6 shows the measured and expected elapsed time of the
EP benchmark. The x axis shows the number of PEBS assists dur-
ing the execution, and they axis shows the measured and expected
elapsed time. Each point corresponds to reset value of 128K, 64K,
32K, 16K, 8K, 4K, and 2K respectively from left to right. The val-
ues were averaged over three runs. Because EP invokes the same
number of threads as the number of cores (10 threads on 10 cores
in this case), PEBS assist occurs in all 10 cores in parallel. There-
fore, the expected elapsed time is calculated per core by dividing
the number of PEBS assists by 10 (the number of cores). The figure
shows the measured and expected elapsed time match very well.

In summary, we conclude that the CPU overhead per PEBS as-
sist estimated in this paper can be applied to multi-threaded appli-
cations as well.

4.6 PEBS Buffer size vs. Cache Pollution
In this section, we analyze the reason why the elapsed time of om-
netpp is not well predicted compared to the other benchmarks in
Section 4.2, and withdraw useful knowledge for applying PEBS to
complex workloads.

We believe that one reason is cache pollution caused by the data
write from PEBS assist because of two pieces of evidence:
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Figure 4: Number of PEBS assists vs. measured and expected elapsed time of SPEC CPU 2006 benchmarks with different reset
values (2K, 4K, 8K, 16K, 32K, 64K, 128K). PEBS buffer size is 4MB. Note that the scales of the axes are different in each figure.
Note also that the y-axes do not start from 0.

Figure 5: Reset value vs. relative error (%) of measured elapsed time against expected elapsed time of SPEC CPU 2006 bench-
marks. The errors are small (within ± 2% for almost all cases) except for omnetpp.
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Figure 6: Number of PEBS assist vs. elapsed time for multi
threaded application (NPB EP).

Figure 7: PEBS buffer size vs. elapsed time and cache misses.
Omnetpp (cache-sensitive) and hmmer (cache oblivious)
show the opposite trends.

(1) Figure 5 shows that the relative error rate increases as the
reset value decreases and therefore the data write of PEBS
assists gets faster.

(2) We confirmed that omnetpp is one of the most cache sensi-
tiveworkloads among SPECCPU (the others are xalancbmk
and mcf) by measuring the allocated CPU cache size vs.
performance degradation with Intel CAT (detailed values
omitted due to the space limit).

Figure 7 shows the elapsed time of omnetpp and hmmer, and
the number of cache misses of omnetpp with various PEBS buffer
sizes. We use hmmer as a comparison with omnetpp because hm-
mer is one of the least cache sensitive workloads in SPEC CPU
(again confirmed with Intel CAT). The reset value is set to 2,000
and the PEBS event specified is UOPS_RETIRED.ALL. Note that the
figure does not show the number of cache misses for hmmer, be-
cause the numbers are 3 orders of magnitude smaller than the ones
of omnetpp and the performance of hmmer is not affected by the
number of cache-misses. The number of cache misses is counted
using a normal performance counter with a large reset value (100K)
thus counting cache misses does to affect the results. The elapsed
time is normalized by the values with 4 MB PEBS buffer.

The result shows two findings: (1) The elapsed time of omnetpp
gets shorter when the PEBS buffer becomes smaller, although
1000x smaller PEBS buffer incurs a 1000x larger number of inter-
ruptions (note that the number of PEBS assists is the same). This

is because smaller PEBS buffer incurs less severe cache pollution as
shown in Section 4.3. (2) The elapsed time of hmmer gets longer
when the PEBS buffer becomes smaller, which is the opposite trend
of the omnetpp results. This is because hmmer is not affected by
the cache pollution incurred by PEBS and the effect of interruption
handling gets more severe when the PEBS buffer gets smaller.

In summary, the cache pollution incurred by PEBS does affect
the performance of the profiled workload, and it can be mitigated
by reducing the PEBS buffer size. However, smaller PEBS buffer in-
curs larger number of interruptions thus the PEBS buffer size must
be carefully set depending on the cache sensitivity of the workload.
Numerically modeling the relationship between the PEBS buffer
size and the severity of cache pollution is a future work, which
should unveil why other cache sensitive workloads (xalancbmk,
mcf) are not as much affected by large PEBS buffer as omnetpp.

5 USING PEBS FOR ONLINE SYSTEM-NOISE
ANALYSIS

Here a guide for using PEBS for online system-noise analysis based
on our experimental results is provided. The CPU overhead per
PEBS assist must be estimated for the target machine. This can be
done with a by running a busy loop with several reset values (e.g.,
2K, 4K, ..., 128K) as shown in Section 4.2. The slope of the best-fit
line on a graph showing the number of PEBS assists occurred vs.
elapsed time of the busy loop represents the CPU overhead per
PEBS assist. We showed that the value estimated in this way can
be used for more complex workloads.

Then, the number of PEBS events occurs per second during a
native run of the profiled workload must be measured. A normal
performance counter with a large reset value can be used so that
no visible overhead to the profiled workload incurs, because what
is needed here is the number of events, but not the context infor-
mation. This means that the measurement can be applied even to
a system serving real users.

Finally, the reset value and the size of the PEBS buffer must be
decided with consideration given to (1) the required sampling rate
to achieve the purpose of the analysis, (2) the acceptable amount
of overhead to the target workload, and (3) the sensitivity of the
target workload to cache pollution. Estimating cache sensitivity
of a given workload is not a simple task, but several methods are
proposed such as using cache partitioning mechanisms [6] or co-
locating a hand-crafted cache pressuring program [4]. If the target
workload is not cache sensitive, the PEBS buffer can be as large as
the CPU cache so that the number of interruptions is minimized.
In this case, the reset value can be easily decided by dividing the
acceptable overhead per second by the CPU overhead per PEBS
assist. Note that the size must be calculated per core, because PEBS
assists are executed in each core in parallel (for example, if the
profiled workload uses 4 cores, the maximum allowed size of PEBS
buffer per core is 1/4 of the last level cache). If the profiledworkload
is cache sensitive, the size of PEBS buffer is recommended to be
small since larger PEBS buffer incurs more severe cache pollution
as shown in Section 4.6. However, too small PEBS buffer incurs too
many interruptions and degrades the performance of the profiled
workload as a result. Therefore the user should find a sweet spot by
measuring the performance degradation and the number of cache
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misses. Systematically finding the best PEBS buffer size for cache
sensitive applications is one aspect of our future work.

6 RELATEDWORK
Estimating overhead of performance counters have been a big con-
cern. Larysch [5] investigates microscopic behaviors of PEBS and
shows that a large portion of PEBS samples are lost when the reset
value is very small (e.g., less than 100). This is because of the gap
between the time when a counter register overflows and the time
when the corresponding PEBS assist is invoked. Any events hap-
pening in between this gap are discarded because the counter reg-
ister is forcefully set to the reset value. The paper also claims that
using PEBS introduces little overhead for their profiling system,
but it does not quantitatively discuss the overhead of PEBS itself
independently. Weaver [12] investigates overheard of normal per-
formance counters when starting and stopping ameasurement and
reading measured values by existing software. The paper shows
that reading a performance counter value using the Linux perf in-
terfaces takes 2K – 3K cycles, which comes from page faults and is
avoidable by populating memory pages before reading the counter.
Although the paper contributes a thorough analysis across many
software versions, our work and this paper are orthogonal; this pa-
per focuses on the overhead to observe the measured values, while
we focus on the overhead of measurement itself.

The accuracy of performance counters is also important because
it directly affects the trustworthiness of the profiling results.Weaver
et al. [13] discuss non-determinism and overcount of the perfor-
mance counters. They evaluate the accuracy of performance coun-
ters using carefully handcrafted assembly programs (whose num-
ber of load/store instructions and branches are known a-priori).
Nowak et al. [8] target basic-block level profiling and discusses
the accuracy of various types of reset values (e.g., even, prime, ran-
domized) on various CPUs. Zaparanuks et al. [16] also discuss the
accuracy of performance counters with various hardware and soft-
ware settings. They show that even for the same binary on the
same CPU, the number of cycles measured differs greatly across
the compiler optimization levels used to link it to surrounding
codes, because the placement of the binary inside a program differs
depending on the optimization level, and this difference affects the
performance of caches or branch predictors [15].

7 CONCLUSION AND FUTUREWORK
In this paper, we evaluated the overhead of PEBS at high sam-
pling rates to use it for message-level system-noise analysis of
high-throughput systems. We found, despite a wide-spread belief
that PEBS incurs negligible overhead, that PEBS incurs 200 – 300
nano seconds of CPU overhead per PEBS assist and also cache pol-
lution due to fast data writes. We also showed a way to predict the
actual overhead incurred to complex workloads inmany cases, and
a guide to configure PEBS for online system-noise analysis.

Future work includes two directions: (1) To further analyze the
overhead of PEBS. Modeling the cache pollution is needed to apply
online system-noise analysis to cache sensitive applications. Iden-
tifying the bottleneck of PEBS overhead inside a CPU is also desir-
able to find a way to reduce the overhead. (2) To use PEBS for real
system-noise analysis based on the knowledge given in this paper.

Our DPDK-based high-throughput network latency injector [1]
suffers sudden latency spikes. As the first step to tackle this issue,
we have found that storing the packet IDs into a rarely-used gen-
eral purpose register and sampling the register value with PEBS
(sampling UOPS_RETIRED.ALL) can identify intentionally-delayed
packets going through a DPDK-based simple packet forwarder.
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